FINAL REPORT

ENERGY BENCHMARKING TOOL DEVELOPMENT

TAF NEW CONCEPT DEVELOPMENT PROGRAM

RWDI #1701187 September 12, 2017

SUBMITTED TO

Ian Klesmer

Grants Manager and Policy Advisor iklesmer@taf.ca

Ekaterina Tzekova

Building Research Manager etzekova@taf.ca

The Atmospheric Fund

75 Elizabeth Street Toronto, Ontario, M5G 1P4 T: 416.392.0271 F: 416.338.0616

SUBMITTED BY

Ontario Association of Architects

111 Moatfield Drive Toronto, Ontario, M3B 3L6

PREPARED BY

Chris Frankowski

Sustainability Consultant chris.frankowski@rwdi.com

Mike Williams

Principal, Sustainability mike.williams@rwdi.com

RWDI

400-901 King Street West Toronto, Ontario, M5V 3H5 T: 519.823.1311 x2062 F: 519.823.1316

TABLE OF CONTENTS

EXE	CUTIV	E SUMMARY]
1	INTR	ODUCTION	2
1.1	Desc	ription of Project	2
2	PRO	JECT ACTIVITIES	3
2.1	Prog	ram Requirement Analysis	3
2.2	Tool	Development	4
2.3	Testi	ng	4
3	PRO	JECT STATUS	5
3.1	Expa 3.1.1 3.1.2	Opportunity: Successful IESO Conservation Fund Application	5
3.2	Toro : 3.2.1 3.2.2	Challenge: City of Toronto Data Unavailable	6
3.3	Unar 3.3.1 3.3.2 3.3.3	Challenging Opportunity: Increased Number of Characteristics	8
4	PROJECT ACTIVITIES In program Requirement Analysis Tool Development Testing PROJECT STATUS Expanded Project Scope 3.1.1 Opportunity: Successful IESO Conservation Fund Application 3.1.2 Challenge: Forward-looking Tool Development Company of Toronto Green Standard Harvesting and Analysis 3.2.1 Challenge: City of Toronto Data Unavailable 3.2.2 Opportunity: Municipal Beta Testing Partnership Company of Characteristics 3.3.1 Challenging Opportunity: Increased Number of Characteristics 3.3.2 Challenge: Post-Processed Results 3.3.3 Challenge: IES-VE Output File Formats NEXT STEPS FINANCIAL REPORT External Funding Secured Discussion of Any Budget Variances CARBON EMISSION REDUCTIONS	9	
5	FINA	NCIAL REPORT	9
5.1	Exte	rnal Funding Secured	9
5.2	Discu	ussion of Any Budget Variances	9
6	CAR	BON EMISSION REDUCTIONS	.10
7	FINA	AL REPORT QUESTIONAIRE NARRATIVE	11
A DD	ENDIC		1/

EXECUTIVE SUMMARY

The following report and appendices demonstrate the development of an automated data harvesting tool that extracts over 400 building characteristics from an eQUEST or IES-VE energy model output file, stores the data in a centralized database, and returns completed submission forms for five building programs and standards. Development is ongoing to expand this tool to include EnergyPlus energy model output files, and a sixth building program.

Two specific outcomes of this project are of immediate benefit to the building industry:

- A robust matrix that identifies the over 400 key building characteristics needed to complete the required submission forms for six existing programs and standards (LEED, HPNC, TGS, OBC SB-10, SBD, and 2030 Challenge), and correlates these characteristics to the location of each data point within the output files of three prominent energy modelling software (eQUEST, EnergyPlus, and IES-VE). While the information in this matrix can be used to inform the manual extraction of data from an energy model file, the vast quantity of characteristics proves the need for an automated data extraction process.
- 2. This concept development project is a valuable part of a larger project, which includes the development of an end-user interface, online portal, and data storage architecture, to form an Energy Benchmarking Tool that is freely and easily accessed by the entire design community in Ontario. To accomplish this, additional funding has been secured through the Independent Electricity System Operator (IESO). The project work that has been completed using funding from TAF was instrumental as a proof-of-concept, and allowed for greater clarity in the scope and intention of the overall project, resulting in a successful application to the IESO Conservation Fund.

Despite these successes, there have been some challenges that limited the final delivery of this project.

- 1. The Toronto Green Standard (TGS) energy model files were not available for the completion of Task Areas 3 and 4, testing and analysis of the tool on external energy model files. Negotiations are ongoing to coordinate the completion of these tasks, but this will fall within the broader project, and will not be completed using funding from TAF.
- 2. The number of data points extracted from each building energy model expanded from 210 in the original proposal to over 400 in the full matrix. The inclusion of these characteristics has doubled the number of data points that are extracted from each energy model, which doubled the effort required for the project. RWDI was therefore not able to complete the full scope of script development within the funding time frame. The remaining scripting will be completed as part of the larger project, under the IESO funding described above.

1 INTRODUCTION

This report provides a final update of the New Construction Energy Benchmarking Tool Development project, in accordance with the terms and conditions outlined in the agreement "RE: GRANT #G-DEC 2016-1 – New Construction Energy Benchmarking Tool Development." It is submitted to The Atmospheric Fund by the Ontario Association of Architects. For the technical development of the tool, the OAA has contracted RWDI engineers, one of the leading research engineering firms in Canada. This report has been prepared by RWDI.

1.1 Description of Project

In the current marketplace, regulations, voluntary standards and regulated incentive programs have been put in place to motivate newly constructed buildings to reduce their energy use and carbon footprint. Largely as a result of these programs, energy modelling has become a mainstream design exercise that is now completed on hundreds of projects annually in Ontario. To date, however, data contained within energy simulation files has not been leveraged either for broad analysis of performance trends or to benchmark like-buildings to improve energy performance.

Through the development of an Energy Benchmarking Tool, this project aims to automate the harvesting of information from completed energy models, and process the data in two ways to inform the building design industry in Ontario:

- 1. Completed program submission forms for six building standards and programs provided to the user; and
- 2. A data visualization platform available to the user to enable benchmarking of their building against the aggregated database of all harvested information.

Table 1 summarizes the six standards and programs that are included in the Energy Benchmarking Tool.

The target market for the project is new construction design decision makers in Ontario including architects, engineers, builders, and municipal building authorities. The standardized program submission forms provided by the Tool will result in streamlined and consistent reporting, which will be of benefit to both the design community and the reporting agencies. The aggregated data set generated through this reporting will be a valuable benchmarking tool to inform the design processes through comparison of energy and emission characteristics to other projects and best practice targets. Further, it may be and a way for program administrators to track and analyze performance trends across all new buildings.

Three energy modelling applications have been identified as priorities for this project, based on their prevalence in the market: eQUEST, EnergyPlus, and Integrated Environmental Solutions – Virtual Environment (IES-VE).

Table 1: Summary of Standards and Programs

Standard / Program	Compatible Version(s)	Submission Form(s)
Leadership in Energy and Environmental Design (LEED)	LEED v2009; LEED v4;	LEED Letter Template (v2009); LEED v4 online submission form;
Toronto Green Standard (TGS)	New Mid to High-Rise Residential and All Non-Residential Development, Version 2.1 April 2017;	Appendix A Better Buildings Partnership – New Construction Energy Modelling Report Summary;
Save On Energy - High Performance New Construction (HPNC)	HPNC Version 6.0, May 2016;	Energy and Demand Summary – May 18, 2016; Program Custom Project Worksheet – May 18, 2016;
Ontario Building Code (OBC)	Supplementary Bulletin 10-2012; *Submission forms for SB10-2017 have not been released however it will be included once available;	SB-10 Form A; SB-10 Form 11;
Savings by Design (SBD)	N/A	RWDI customized template (no official modelling submission form);
2030 Challenge	The 2030 Challenge 2015;	N/A

2 PROJECT ACTIVITIES

2.1 Program Requirement Analysis

The first task of this project was to prepare a concise and comprehensive summary of the reporting requirements for LEED, TGS, HPNC, OBC, SBD and 2030 Challenge into a single matrix. Through this process, 300 building and energy characteristics were identified for extraction from each energy model, to enable completion of the submission forms for each standard/program. An additional 100 characteristics were selected for inclusion as useful metrics for the benchmarking process. These characteristics were selected based on RWDI's industry experience and the recommendation of the TAF staff. The Program Requirements Matrix was submitted for review by the OAA in March, 2017.

Having identified the program requirements and building characteristics for extraction, the next task involved locating each characteristic in the output files of all three selected energy modelling applications. The full matrix of over 400 building characteristics with identified energy modelling output locations can be found in Appendix A.

2.2 Tool Development

A Use Case Diagram and System Flowchart were developed to outline the structure of the tool. These can be found in Appendix B. From this outline, and using the information detailed in the Program Requirements Matrix described in Section 2.1, the Energy Benchmarking Tool was developed using the Python programming language.

The tool consists of a library of modules that are capable of extracting information from the output files of three different energy modelling applications and using that information to populate the submission forms for six different building programs. There is an extraction module for each of the three energy modelling application output files covered in the scope of this project. The extraction modules go through the modelling output files, extract the required information, and return it to the main module. There is also a populating module for each of the program submission documents that can be generated by the tool. The populating modules take the information passed to them by the main module, and create the required output files by inserting the data into template documents. The main module scans the project folder for the modelling output files, reads additional information out of the setup workbook, and calls the extraction and output modules.

The extraction modules were created by reviewing multiple output files from each energy modelling application and reverse engineering the output file format. By understanding the output file format fully, a reader can be created that is capable of interpreting any output from the energy modelling application.

The populating modules were developed using the submission documents that are provided by the programs as templates that can be populated by the modules.

The main module contains the logic for scanning the project folder for modelling output files, reading the project setup workbook, and calling the extraction and populating modules.

The tool was developed and tested on Python 3.5.1. The project utilizes several packages beyond those included in the Python standard library. beautifulsoup4 is used for html file scraping, openpyxl is used for reading and writing excel files, and fdfgen is used for creating Acrobat Forms Data Format files. The tool also requires pdftk to be installed on the system for creating PDF files.

A copy of the current program source code is found in Appendix C.

2.3 Testing

The tool was developed and tested using multiple example modelling output files to which RWDI had access, for each modelling application. The modules were written in an iterative fashion by adding the logic for extracting the next data point, running the module against the test output files, and confirming that the data was extracted correctly for all test output files. The scripts were developed by reverse engineering the output files, so having a more diverse set of output files to test against improve the robustness of the extraction scripts.

Unfortunately, we were unable to access the City of Toronto modelling files (see Section 3.2.1 for more details), and as a result have not been able to test the tool against external files. As the development of the tool continues, the modules will continue to be tested against a larger and more diverse set of modelling output files.

3 PROJECT STATUS

Through the project activities described in Section 2, the project has progressed as follows:

- 1. Over 400 building characteristics have been identified as required for six programs and standards, and the location of these characteristics has been identified in three energy modelling software.
- 2. A library of modules has been developed, using Python programming language, to extract information from the output files of eQUEST and IES-VE energy modelling applications.
 - a. Note: extraction of all 400 building characteristics from IES-VE output files was not possible, and is discussed further in Section 3.3.3.
- 3. Additional Python modules have been developed to populate the submission forms for four programs and standards.
- 4. The modules were tested using sample eQUEST and IES-VE energy modelling files in an iterative fashion to confirm that data extraction and submission form generation were completed as designed. The items highlighted in yellow in Appendix A are still under development.

Appendix D contains example program submission forms that were created by the tool from an example energy modelling output file. The outputs cover 4 of the 5 program submission forms included in the proposal (LEED, TGS, OBC, and SBD).

There is no program submission form for the 2030 Challenge. At this time, the relevant outputs are extracted into the database of building characteristics, but are not presented in an output file. With the full development of the tool, through the IESO funded project, a user input that identifies the use-type of the building will enable a comparison with the specific 2030 Challenge target for that building type. At that time, a reporting strategy will be developed to present the 2030 Challenge results.

The development of the EnergyPlus extraction module, and the HPNC populating module are still in progress. Improvements to all of the modules will continue as the tool is further developed, as is discussed in the following sections, which identify the challenges and opportunities encountered by the project and the program modifications that have been undertaken. These ongoing improvements will be completed as part of the IESO Conservation Funding project. A full list of the next steps that will be completed using the IESO funding is found in Section 4.

3.1 Expanded Project Scope

3.1.1 Opportunity: Successful IESO Conservation Fund Application

Parallel to the work that has been done for this Energy Benchmarking Tool Development project, RWDI has partnered with the OAA and the Toronto 2030 District to apply to the Independent Electricity Systems Operator (IESO) Conservation Fund. The IESO application proposed an expansion of this current project to include a robust

RWDI#1701187 September 12, 2017

online user interface, beta-testing with industry partners from the design and regulatory sectors, and 2-years of user engagement to support the market launch of the Benchmarking Tool.

The application was successful, and the project has been awarded its full funding request. This is an excellent opportunity to build upon the groundwork that has been completed in this current TAF project, and move the Energy Benchmarking Tool from the concept development stage into full market deployment. It is believed that the TAF project strongly contributed to the success of the IESO application by demonstrating the demand for a benchmarking tool in the current market.

3.1.2 Challenge: Forward-looking Tool Development

The successful receipt of IESO Conservation Fund funding means that the larger initiative, of which the current project is the first step, is moving forward. This has altered the approach taken on the tasks and deliverables for the TAF funding, in reflection of the expanded overall scope. Specifically, the scope and function of the data extraction scripts has been expanded to accommodate the future project development, in order to avoid rewriting code in the future.

As a result, the scripts are more robust than initially planned, however this added detail is reflected in the increased effort spent in their development beyond the proposed TAF funding budget. Further, it has proven to be a challenge to complete the additional work within the timeframe of the TAF project.

3.2 Toronto Green Standard Harvesting and Analysis

3.2.1 Challenge: City of Toronto Data Unavailable

The TAF Funding Agreement included as a deliverable the results from a test run of the Energy Benchmarking Tool using energy model files submitted to the City of Toronto for application to the Toronto Green Standard. To facilitate this, RWDI met with representatives from the City to discuss the use of their modelling files. Unfortunately, due to confidentiality concerns, the City officials were unwilling to provide files, preventing RWDI from producing this deliverable.

In order to address the confidentiality concerns, an alternative was proposed where RWDI would produce a standalone version of the tool that could be installed and tested on-site at the City of Toronto Energy Efficiency Office, by City employees. Negotiations are underway to coordinate the completion of this collaborative testing. As such, this deliverable cannot currently be produced, however it is anticipated that this test run will be successfully completed once the arrangements are finalized and the stand alone version is produced by RWDI.

3.2.2 Opportunity: Municipal Beta Testing Partnership

Automated reporting to the most prominent new construction energy conservation programs in Ontario is a key function of our tool. Beyond providing a service to design professionals, this has been identified as an excellent opportunity to provide additional value to energy conservation program regulators. While all of the targeted standards and programs share a common objective of energy conservation, their varied reporting and compliance requirements have created confusion and detracted from their underlying intent. Developing a single reporting platform for all of these programs will simplify the process for applicants and the program's governing bodies alike.

Our belief is that by aligning the Energy Benchmarking Tool with all of these programs, the use of our tool will be seen as a means to simplify and streamline the required program reporting and therefore use of the tool will be adopted rapidly and broadly by the design and program regulation communities. Despite not connecting for the TGS data harvesting and analysis, we are hopeful that the City of Toronto will participate in the development of the full Energy Benchmarking Tool as beta testers, and that the use of this tool will be beneficial to their offices. Working with the City of Toronto as beta testers will also allow the early resolution of their confidentiality concerns within the full tool.

3.3 Unanticipated Hurdles

3.3.1 Challenging Opportunity: Increased Number of Characteristics

The TAF funding proposal estimated that 210 data points would be extracted from each energy model to complete the Energy Benchmarking Tool objectives, based on a working beta version of the tool. During the Program Requirements Assessment task of this project, two expansions were made to the project scope:

- 1. The 2030 Challenge was added as a sixth program/standard for consideration; and
- 2. It was decided that tool would be compatible with both LEED 2009 and LEED v4 submission requirements and forms.

This meant that the original proposal greatly underestimated the number of characteristics that would be required to complete the submission forms for all six programs and standards. An additional 190 data points were identified for inclusion in the extraction process, for a total of over 400 building characteristics per energy model – double what was anticipated during the TAF funding application process.

The additional data points greatly increased the effort required for this project, both in the program requirement analysis tasks and in the tool development: for each additional characteristic, a feature needs to be added to each of the three data extraction scripts – one for each modelling software. Additional script development is also needed to process the data into the new program submission forms.

RWDI#1701187 September 12, 2017

Despite this increased effort, the expanded number of building characteristics included in the extraction process enables the Energy Benchmarking Tool to be a more thorough and overall useful tool.

3.3.2 Challenge: Post-Processed Results

The process of energy modelling, and the limitations of current energy modelling software, frequently require the energy modeller to use software features in unintended ways in order to achieve a desired outcome. This process creates the necessity for manual post-processing by the energy modeller in order to convert the model results into what they are meant to represent.

The Energy Benchmarking Tool is incapable of identifying when this situation arises, and instead interprets the model files literally. Therefore, the results presented through this tool will, at times, not agree with an energy modelling report, or other post-processed interpretation of the results. This is an unavoidable challenge of the automated data extraction process, yet the intention of this project has never been to replace the experience of the design team. Rather, the Energy Benchmarking Tool is designed to provide an opportunity for the team to verify and review their design choices in the context of other similar buildings, and to relieve the time required for submission to building programs and standards. It is the responsibility of the energy modeller to review the model outputs that are extracted by the tool and make any necessary modifications.

3.3.3 Challenge: IES-VE Output File Formats

IES-VE is a proprietary energy simulation software. A summary report is produced when each model is run, but the detailed simulation results are only accessible through the IES-VE user interface. While many energy performance characteristics are provided in the summary report, several building characteristics, such as the seasonal efficiency of mechanical equipment, are not included and can only be determined through manual review of the model results. This has presented a challenge for the automated extraction of data from the model outputs.

RWDI has reached out to IES in an attempt to solve this data extraction issue but has received limited response. We hope that as this project expands under the IESO Conservation Funding, our partnerships with municipal authorities, modelling associations, and industry leaders will help demonstrate to IES the demand for the collaborative creation of an output format for IES-VE that aligns with the Energy Benchmarking Tool. In the meantime, the Energy Benchmarking Tool will extract as much information as possible from the current IES-VE summary report – the information that can be extracted from current summary report is sufficient for the completion of the program submission forms, but not all 400 data points can be extracted to the database. Appendix A identifies which characteristics have been successfully captured by the current scripting.

4 NEXT STEPS

Building upon the foundational work that was accomplished during this concept development project, the next steps for the Energy Benchmarking Tool Development project, which will be completed using the IESO Conservation Funding, can be summarized as follows:

- Complete the development of the tool, including finalizing the automated data extraction scripts and preliminary output reports, designing a user interface, and developing data security and stewardship protocols;
 - a. This will include development and testing of the scripting modules that were not completed during this concept development stage, e.g.: extraction from EnergyPlus, output submission form for HPNC, and development of a reporting strategy for the 2030 Challenge based on user inputs.
- 2. Initial industry engagement through beta testing and tool technical refinement;
- 3. 24-month full rollout to industry, including province-wide education and engagement sessions; and
- 4. Ongoing technical refinement and support for any updates to the standards/programs or software.
 - a. In order to maintain the relevance of the Energy Benchmarking Tool for users, the standards and programs that are included will be reviewed regularly, and scripting will be developed or modified as required to accommodate changes or updates.

5 FINANCIAL REPORT

5.1 External Funding Secured

The funding provided by TAF has proven beneficial in leveraging external funding from the IESO Conservation Fund, as described in Section 3.1.1. The additional funding that has been secured will enable the expansion of this project into a larger project, which includes the development of an end-user interface, online portal, data storage architecture, and end-user agreements, to make the Energy Benchmarking Tool accessible to the building design and construction industry, and the building regulatory community across Ontario.

5.2 Discussion of Any Budget Variances

As discussed in detail in Section 3 of this report, a number of challenges and opportunities have impacted the outcome of this project.

1. The successful receipt of funding from the IESO Conservation Fund, and the corresponding expansion of the overall project has altered the approach taken for the scripting of the Energy Benchmarking Tool. The scripts are being written with this expansion in mind, to avoid future adjustments and re-programming. This added flexibility has taken greater time than was anticipated by the original TAF funding application.

RWDI#1701187 September 12, 2017

- 2. The Toronto Green Standard (TGS) energy model files were not available for the completion of Task Areas 3 and 4. Negotiations are ongoing to coordinate the completion of these tasks, but this will fall within the broader project, and will not be completed using funding from TAF.
- 3. Beyond the 210 building characteristics that were extracted in the beta version of the tool, as described in the grant proposal, an additional 190 characteristics have been included in the Energy Benchmarking Tool as required for program submission forms, or as useful metrics for the benchmarking process. These characteristics were selected based on RWDI's industry experience and the recommendation of the TAF staff, however their inclusion has doubled the number of data points that are extracted from each energy model, which therefore greatly increased the effort required for the project.

6 CARBON EMISSION REDUCTIONS

The purpose of this project is to develop a benchmarking process for new construction energy models. In contrast to the application of a specific energy conservation measure it is difficult to quantifiably estimate the benefits of a benchmarking program. However, we know that when benchmarked metrics are introduced and managed it often leads to improvement – "you can't manage what you don't measure". To provide an estimated potential benefit of our project we will look to the well-established benefits of benchmarking in the existing building sector.

In Toronto, Civic Action's Race to Reduce achieved a 12% energy reduction over four years of benchmarking. While this was only one building type (office) and participants were self-selected, which likely skews performance higher, the results are nonetheless impressive. To be more conservative, we look to New York City and San Francisco who have had mandatory energy reporting of existing building energy use through EnergyStar Portfolio Manager in place for 3 and 4 years, respectively. Over this time period the cities have reported near 6% and 8% energy reductions in their existing building stock as a result of the implementation of their benchmarking programs. We believe that this Energy Benchmarking Tool could see a similar benefit, i.e. a 7% reduction in energy consumption, in the performance of new construction buildings.

To estimate the absolute potential of the project requires a forecast of anticipated new construction activity in Ontario. Obtaining the data necessary to prepare this estimate proved challenging; however, the following provides our best effort estimate.

We were able to obtain TOCore data, which estimates that there are currently 76,687 residential units in the development pipeline, all of which could potentially be impacted by our tool. Assuming an average unit size of 70 m² and a gross-up ratio of 1.2 the total residential area in the pipeline equates to a gross floor area of 6,441,708 m². To estimate our Project's potential impact on the commercial building sector we used historic TOCore data, which estimates commercial development at 950,000 m² since 2011 and have assumed that a similar gross floor area of commercial development is also in the pipeline. To annualize these estimates, we divided the total GFA estimates by 5 years, which equates to estimates of 1,200,000 and 190,000 m²/yr of residential and commercial development in Toronto's core, respectively.

RWDI#1701187 September 12, 2017

To scale these estimates up to represent total City of Toronto and Province of Ontario estimates we have assumed that development in Toronto's core represents 40% of development in the City and that development in Toronto represents 20% of all development in the Province. This scales the total residential and commercial development in Ontario to 16,000,000 and 2,400,000 m 2 /yr, respectively.

Recent work completed for the City of Toronto in preparation for TGS v3 estimated the energy use and GHG intensity of residential and commercial buildings, which meet the minimum performance requirements of the OBC to be 225 and 233 kWh/m 2 /yr, and 0.035 tonnes/m2 and 0.037 tonnes/m 2 , respectively. For the purposes of this analysis we will assume an average for both residential and commercial buildings of 230 kWh/m 2 /yr and 0.036 tonnes CO $_2$ e/m 2 .

Based on the above assumptions we estimate our Project's province-wide annual potential as follows:

Energy Savings: 296,000,000 kWh/yr

= $[7\% \text{ reduction in energy consumption}] \times [16,000,000 \text{ m}^2/\text{yr} + 2,400,000 \text{ m}^2/\text{yr}] \times [230 \text{ kWh/m}^2/\text{yr}]$

GHG Emissions: 46,368 tonnes of CO₂e/yr

= $[7\% \text{ reduction in energy consumption}] \times [16,000,000 \text{ m}^2/\text{yr} + 2,400,000 \text{ m}^2/\text{yr}] \times [0.036 \text{ tonnes/m}^2]$

We believe these estimates to be conservative given that our project will target not only the residential and commercial sectors, but any building required to prepare an energy model, which would add savings realized by institutional and industrial developments to the potential benefit of this Project.

7 FINAL REPORT QUESTIONAIRE NARRATIVE

Schedule C - Final Report Questionnaire

1. Did you carry out the project as planned? If not, what changed and why? Did anything happen that you did not anticipate? If you had to do it all over again, what would you do differently? Describe the single most positive and negative aspects of the project.

The project was not carried out precisely as planned due to a number of challenges and opportunities that arose during the project, as detailed in Section 3. In hindsight, the time and effort required to complete each of the deliverables was underestimated by the original funding proposal. Anticipating this and either reducing the overall project scope or expanding the project budget (in terms of time and funding) would allow for a more smoothly delivered project.

The most positive aspect of this project has been the enthusiastic response it has generated from the wider building industry and community. At RWDI, we have been striving towards the expanded use of aggregated data to inform new construction design through benchmarking of performance trends, and have found that our clients

RWDI#1701187 September 12, 2017

are very interested in learning from this analysis. In hearing that we are developing a tool to facilitate this process, several clients and collaborators have signed up to be volunteer beta testers.

A negative aspect of this project has been the challenge to extract data from a proprietary software, IES-VE, as described in Section 3.3.3. We have reached out to IES for support and in an attempt to develop a collaborative relationship, but at this time no such relationship has been established. As a result, we have had to reduce the scope of our data extraction when IES-VE is the energy modelling software used. We are hopeful that as the Energy Benchmarking Tool gains traction in the industry, the developers of IES-VE will be encouraged to collaborate with us.

2. What results have you accomplished? How do you measure success and how have your contributions led to specific measurable results? How do the results of your work compare with the objectives identified in the proposal? What other progress have you made in achieving your goals?

At this time, 400 building characteristics have been identified from six programs and standards relevant in the Ontario building context, and each has been correlated with its specific data output location in three leading energy modelling software. Functioning Python modules have been written for two of these three energy modelling applications (eQUEST and IES-VE), and the development of the module for EnergyPlus is in progress.

This does not fully achieve the results and objectives that were outlined in the proposal, which include full tool development for all three applications, and testing of 25 energy models provided by the City of Toronto. Full discussion of the missed objectives can be found in Section 3 of this report.

Despite these shortcomings, the project has successfully achieved its goal of receiving funding from the IESO through its Conservation Fund. The additional budget will be used to expand the Energy Benchmarking Tool to its full intended scope, facilitate a beta testing phase with industry volunteers, and introduce the final tool to the building industry using educational programming and ongoing technical support.

3. What have you learned from your project? What were the critical elements of your success? How will you apply your lessons? Lessons learned may relate to collaboration strategies, communications, policy, scientific matters or other interesting insights gained from your work.

The funding provided by TAF allowed RWDI to research the outputs generated by the energy modelling applications, the similarities and differences between these outputs, and how they can be utilized beyond the modelling process itself. The lessons learned during this initial phase of the project will be carried forward into the further development of the tool as part of the IESO funding that has been received.

4. How has your project contributed to the greater city-wide/provincial/national campaigns or strategies for climate change and/or air pollution in Canada? What will happen as a result of the project in the next five years or beyond?

Buildings are responsible for a significant portion of greenhouse gas emissions at the federal, provincial, and municipal levels – approximately 40%. This statistic has brought energy efficient and environmentally responsible building design forward as a focus of climate change action plans and strategies at all levels, as authorities recognize the potential for greenhouse gas emission reductions in the building industry. The Energy

RWDI#1701187 September 12, 2017

Benchmarking Tool holds the potential to positively impact the building industry by reducing energy consumption in new construction buildings through benchmarking and energy conservation measures.

5. How did your collaboration efforts contribute to the project? Describe your collaboration activities with a comment on how you measured impact and what results can be traced back specifically to your collaboration efforts? What challenges did you face with your collaborations?

This positive attention that the TAF funding has brought to this Energy Benchmarking Tool project has been instrumental in strengthening the collaborative opportunities at the core of the project. Through this project, relationships have been fostered between RWDI and the Ontario Association of Architects, the Toronto 2030 District, the IESO, the Canadian chapter of the International Building Performance Simulation Association, and 10 volunteer beta testing firms and organizations.

A major collaboration effort in this project was the attempted collaboration with the City of Toronto, which had the goal of using Toronto Green Standard energy model submissions to test the reliability and robustness of the Energy Benchmarking Tool. This collaboration faced a major challenge in the confidentiality concerns of the City, which led to their unwillingness to participate. As a result, two of the deliverables of this project, which were tied to this collaboration, were unable to be achieved. Nevertheless, there are ongoing negotiations underway with the City of Toronto to determine how a future partnership could be established. By accommodating the privacy concerns of the City, the Energy Benchmarking Tool will be stronger, overall, and more easily adopted by similar municipal or regulatory bodies. Please refer to Section 3.2 of this report for more discussion.

RWDI#1701187 September 12, 2017

6. How did you find your experience working with the The Atmospheric Fund? Please provide feedback on positive aspects and areas where the relationship could be improved.

The experience of working with TAF has been overall a positive one. Each deliverable has been well-received by the TAF team, and constructive feedback has been offered to improve the overall project. The enthusiasm with which TAF adopted this concept development project has driven our ability to promote the full Energy Benchmarking Tool project, and was instrumental in the success of the IESO Conservation Fund application.

7. We encourage you to provide interesting high resolution photos and images (no more than three), or internet links related to your project. For those that are publishable, please include permission for us to use them in our publications and include credit details.

N/A

APPENDICES

Appendix A – Full Matrix w/ status within tool

Appendix B – Use Case Diagram and System Flowchart

Appendix C - Source Code

Appendix D – Sample Submission Reports from Test Runs

APPENDIX A: FULL MATRIX

		Manual			
Field Label	Field Description	entry	eQuest DOE-2	IES	EnergyPlus
Output-0000	Project Name	Y			
Output-0001	Anonymous Name	Υ			
Output-0002	Energy Model Status	Υ			
Output-0003	Design Phase	Υ			
Output-0004	Objective	Y			
Output-0005	Completion Year	Υ			
Output-0006	Tender Year	Υ			
Output-0007	SPA-Number	Y			
Output-0008	Energy Modeller Name	Y			
Output-0009	Architect Name	Y			
Output-0010	Code compliance path	Y			
Output-0011	Name of Applicant	Y			
Output-0012	Company Name	Y			
Output-0013	Primary Use Type	Υ			
Output-0014	Secondary Use Type	Y			
Output-0015	Building Type	Y			
Output-0016	Gross Floor Area	Υ			
Output-0017	Modelled Floor Area		LV-B	BPRM: 1.1 General Information	ABUPS: Building Area
Output-0018	Total Floor Area		LV-B	BPRM: 1.1 General Information	ABUPS: Building Area
Output-0019	Energy Modelled Year (for Hourly data)	Y		Reports\PRM\UseDemand,DetailedTables	
Output-0020	Floor Area Primary Use Type (%)	Y		Reports\PRM\UseDemand	
Output-0021	Floor Area Secondary Use Type (%)	Y		Reports\PRM\UseDemand	
Output-0022	Country	Υ			
Output-0023	Province	Υ			
Output-0024	City	Υ			
Output-0025	Street	Υ			
Output-0026	Address	Υ			
Output-0027	Latitude	Υ		APSimResults/Weather File	
Output-0028	Longitude	Υ		APSimResults/Weather File	
Output-0029	Heating Degree Days			Weather file	Climate Data Summary: V
Output-0030	Cooling Degree Days			Weather file	Climate Data Summary: V
Output-0031	2030 Region	Υ			
•	2030 Reference EUI (kWh/m2)	Υ			
Output-0033	2030 Weighted Reference EUI (kWh/m2)	Υ			
Output-0034	2030 Target Reduction (%)	Υ			
Output-0035	2030 Target EUI (kWh/m2)	Υ			
Output-0036	2030 Reduction	Y			

		Manual			
Field Label	Field Description	entry	eQuest DOE-2	IES	EnergyPlus
Output-0037	Proposed - Plug load energy (MJ)		BEPS - MISC Equip	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0038	Proposed - receptacle equipment energy type		Inferred	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0039	Proposed - receptacle equipment consumption		BEPS - MISC Equip	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0040	Proposed - receptacle equipment demand		PS-F	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0041	Proposed - Lights energy (MJ, kWh)		BEPS - AREA LIGHTS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0042	Proposed - Lights electrical annual consumption (kWh)		BEPS - AREA LIGHTS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0043	Proposed - Lights natural gas annual consumption (kWh)		BEPS - AREA LIGHTS	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0044	Proposed - Lights energy use intensity (kWh/m2-yr)		Calculated	Reports\PRM\UseDemand	Calculated from ABUPS
Output-0045	Proposed - interior lighting energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0046	Proposed - interior lighting consumption		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0047	Proposed - interior lighting demand		N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0048	Proposed - exterior lighting energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0049	Proposed - exterior lighting consumption		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0050	Proposed - exterior lighting demand		N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0051	Proposed - interior lighting - process energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0052	Proposed - interior lighting - process consumption		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0053	Proposed - interior lighting - process demand		N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0054	Proposed - Misc. Equipment electrical annual consumption (kWh)		BEPS - MISC EQUIPMT	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0055	Proposed - Misc. Equipment natural gas annual consumption (kW	h)	BEPS - MISC EQUPMT	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0056	Proposed - Misc. Equipment energy use intensity (kWh/m2-yr)		Calculated	Reports\PRM\UseDemand	Calculated from ABUPS
Output-0057	Proposed - Space heating energy (MJ, kWh)		BEPS - SPACE HEAT	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0058	Proposed - Space Heating electrical annual consumption (kWh)		BEPS - SPACE HEAT	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0059	Proposed - Space Heating natural gas annual consumption (kWh)		BEPS - SPACE HEAT	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0060	Proposed - Space Heating energy use intensity (kWh/m2-yr)		Calculated	Reports\PRM\UseDemand	Calculated from ABUPS
Output-0061	Proposed - space heating energy type		Inferred	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0062	Proposed - space heating consumption		BEPS - SPACE HEAT	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0063	Proposed - space heating demand		PS-F	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0064	Proposed - Space cooling energy (MJ, kWh)		BEPS - SPACE COOL	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0065	Proposed - Space Cooling electrical annual consumption (kWh)		BEPS - SPACE COOL	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0066	Proposed - Space Cooling natural gas annual consumption (kWh)		BEPS - SPACE COOL	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0067	Proposed - Space Cooling energy use intensity (kWh/m2-yr)		Calculated	Reports\PRM\UseDemand	Calculated from ABUPS
Output-0068	Proposed - space cooling energy type		Inferred	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0069	Proposed - space cooling consumption		BEPS - SPACE COOL	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0070	Proposed - space cooling demand		PS-F	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0071	Proposed - heat rejection energy type		PS-F	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0072	Proposed - heat rejection consumption		BEPS - HEAT REJECT	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0073	Proposed - heat rejection demand		PS-F	Reports\PRM\UseDemand	DEUCS: End Uses by Subo

		Manual			
Field Label	Field Description	entry	eQuest DOE-2	IES	EnergyPlus
Output-0074	Proposed - Pumps energy (MJ)		BEPS - PUMPS & MISC	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0075	Proposed - Pumps electrical annual consumption (kWh)		BEPS - PUMPS & MISC	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0076	Proposed - Pumps natural gas annual consumption (kWh)		BEPS - PUMPS & MISC	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0077	Proposed - Pumps energy use intensity (kWh/m2-yr)		Calculated	Reports\PRM\UseDemand	Calculated from ABUPS
Output-0078	Proposed - pumps energy type		Inferred	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0079	Proposed - pumps consumption		BEPS - PUMPS & MISC	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0080	Proposed - pumps demand		PS-F	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0081	Proposed - Fans energy (MJ)		BEPS - VENT FANS	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0082	Proposed - Fans electrical annual consumption (kWh)		BEPS - VENT FANS	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0083	Proposed - Fans natural gas annual consumption (kWh)		BEPS - VENT FANS	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0084	Proposed - Fans energy use intensity (kWh/m2-yr)		Calculated	Reports\PRM\UseDemand	Calculated from ABUPS
Output-0085	Proposed - fans - interior ventilation energy type		Inferred	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0086	Proposed - fans - interior ventilation consumption		BEPS - VENT FANS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0087	Proposed - fans - interior ventilation demand		PS-F	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0088	Proposed - fans - parking garage energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0089	Proposed - fans - parking garage consumption		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0090	Proposed - fans - parking garage demand		N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0091	Proposed - Service Hot Water energy (MJ, kWh)		BEPS - DOMHOT WATER	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0092	Proposed - Service Hot Water electrical annual consumption (kWh	n)	BEPS - DOMHOT WATER	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0093	Proposed - Service Hot Water natural gas annual consumption (k)	Vh)	BEPS - DOMHOT WATER	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0094	Proposed - Service Hot Water energy use intensity (kWh/m2-yr)		Calculated	Calculated from Reports\PRM\UseDemand	Calculated from ABUPS
Output-0095	Proposed - service water heating energy type		Inferred	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0096	Proposed - service water heating consumption		BEPS - DOMHOT WATER	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0097	Proposed - service water heating demand		PS-F	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0098	Proposed - IT equipment energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0099	Proposed - IT equipment consumption		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0100	Proposed - IT equipment demand		N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0101	Proposed - refrigeration equipment energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0102	Proposed - refrigeration equipment consumption		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0103	Proposed - refrigeration equipment demand		N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0104	Proposed - fans - kitchen ventilation energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0105	Proposed - fans - kitchen ventilation consumption		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0106	Proposed - fans - kitchen ventilation demand		N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subc
Output-0107	Proposed - cooking energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0108	Proposed - cooking consumption		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0109	Proposed - cooking demand		N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0110	Proposed - industrial process energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo

		Manual			
Field Label	Field Description	entry	eQuest DOE-2	IES	EnergyPlus
Output-0111	Proposed - industrial process consumption		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0112	Proposed - industrial process demand		N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0113	Proposed - elevators and escalators energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0114	Proposed - elevators and escalators consumption		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0115	Proposed - elevators and escalators demand		N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0116	Proposed - heat pump supplementary energy type		BEPS or N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0117	Proposed - heat pump supplementary consumption		BEPS or N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0118	Proposed - heat pump supplementary demand		BEPS or N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subc
Output-0119	Proposed - Total peak demand summer (kW)			Reports\PRM\VistaResults,Detailed Tables	Calculated from ECPDM /
Output-0120	Proposed - Total peak demand winter (kW)			Reports\PRM\VistaResults,Detailed Tables	Calculated from ECPDM /
Output-0121	Proposed - Total peak (kW)			Reports\PRM\UseDemand	Calculated from DEUCS
Output-0122	Proposed - Renewables - Electric (kWh)			Reports\PRM\UseDemand	ABUPS: Electric Loads Sat
Output-0123	Proposed - Total - Electric (kWh), (MJ)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses
Output-0124	Proposed - Renewables - Natural Gas (kWh)		N/A	Reports\PRM\UseDemand	ABUPS: On-Site Thermal
Output-0125	Proposed - Total - Natural Gas (kWh),(m3),(MJ)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses
Output-0126	Proposed - Total - Oil / Other fuels (MJ)		N/A	Reports\PRM\UseDemand	ABUPS: End Uses
Output-0127	Proposed - Hourly electricity consumption data (kWh)				
Output-0128	Proposed - HVAC Auxilary		BEPS / NA	Primary VS Other HVAC system	Calculated from ABUPS: E
Output-0129	Proposed - Misc Electrical		BEPS / NA	Reports\PRM\UseDemand	Calculated from ABUPS: E
Output-0130	Proposed - Other Energy Use 1				
Output-0131	Proposed - Other Energy Use 2				
Output-0132	Proposed - Total Annual Energy		BEPS	Reports\PRM\UseDemand	ABUPS: Site and Source E
Output-0133	Proposed - Total Annual Energy Cost		ES-D	Reports\PRM\UseDemand	ERSR: Annual Cost
Output-0134	Proposed - annual energy cost - electricity		ES-D	Reports\PRM\UseDemand	ERSR: Annual Cost
Output-0135	Proposed - annual energy cost - natural gas		ES-D	Reports\PRM\UseDemand	ERSR: Annual Cost
Output-0136	Proposed - annual energy cost - district cooling		ES-D	Reports\PRM\UseDemand	ERSR: Annual Cost
Output-0137	Proposed - Total Annual co2e emissions		BEPS & Calculation	Reports\PRM\UseDemand	Calculated from ABUPS: E
Output-0138	Proposed - Percentage less co2 emmissions		BEPS & Calculation	Reports\PRM\UseDemand	Calculated
Output-0139	Reference - Plug loads energy (MJ)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0140	Reference - receptacle equipment energy type		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0141	Reference - receptacle equipment consumption - model output x4	orientati	BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0142	Reference - receptacle equipment demand - model output x4 orie	ntation		Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0143	Reference - Lights total annual energy usage (kWh, MJ)		BEPS - AREA LIGHTS	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0144	Reference - Lights electrical annual consumption (kWh)		BEPS - AREA LIGHTS	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0145	Reference - Lights natural gas annual consumption (kWh)		BEPS - AREA LIGHTS	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0146	Reference - Lights energy use intensity (kWh/m2-yr)		Calcualted	Reports\PRM\UseDemand	Calculated from ABUPS
Output-0147	Reference - interior lighting energy type		Inferred	Reports\PRM\UseDemand	ABUPS: End Uses by Subo

		Manual			
Field Label	Field Description	entry	eQuest DOE-2	IES	EnergyPlus
Output-0148	Reference - interior lighting consumption - model output x4 orient	tation	BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0149	Reference - interior lighting demand - model output x4 orientation	า		Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0150	Reference - interior lighting - process energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0151	Reference - interior lighting - process consumption - model output	t x4 orient	N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0152	Reference - interior lighting - process demand - model output x4 c	rientation	N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0153	Reference - exterior lighting energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0154	Reference - exterior lighting consumption - model output x4 orien	tation	N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0155	Reference - exterior lighting demand - model output x4 orientatio	n	N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0156	Reference - Misc. Equipment electrical annual consumption (kWh)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0157	Reference - Misc. Equipment natural gas annual consumption (kW	/h)	BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0158	Reference - Misc. Equipment energy use intensity (kWh/m2-yr)		BEPS	Reports\PRM\UseDemand	Calculated from ABUPS
Output-0159	Reference - Space Heating total annual energy usage (kWh)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0160	Reference - Space Heating electrical annual consumption (kWh)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0161	Reference - Space Heating natural gas annual consumption (kWh)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0162	Reference - Space Heating energy use intensity (kWh/m2-yr)		BEPS & Calculation	Reports\PRM\UseDemand	Calculated from ABUPS
Output-0163	Reference - space heating energy type		Inferred	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0164	Reference - space heating consumption - model output x4 orienta	tion	BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0165	Reference - space heating demand - model output x4 orientation			Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0166	Reference - Space Cooling total annual energy usage (kWh, MJ)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0167	Reference - Space Cooling electrical annual consumption (kWh)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0168	Reference - Space Cooling natural gas annual consumption (kWh)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0169	Reference - Space Cooling energy use intensity (kWh/m2-yr)		BEPS & Calculation	Reports\PRM\UseDemand	Calculated from ABUPS
Output-0170	Reference - space cooling energy type		Inferred	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0171	Reference - space cooling consumption - model output x4 oriental	tion	BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0172	Reference - space cooling demand - model output x4 orientation			Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0173	Reference - heat rejection energy type		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0174	Reference - heat rejection consumption - model output x4 orienta	tion	BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0175	Reference - heat rejection demand - model output x4 orientation			Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0176	Reference - Pumps energy (MJ)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0177	Reference - Pumps electrical annual consumption (kWh)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0178	Reference - Pumps natural gas annual consumption (kWh)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0179	Reference - Pumps energy use intensity (kWh/m2-yr)		BEPS & Calculation	Reports\PRM\UseDemand	Calculated from ABUPS
	Reference - pumps energy type		Inferred	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0181	Reference - pumps consumption - model output x4 orientation		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0182	Reference - pumps demand - model output x4 orientation			Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0183	Reference - Fans energy (MJ)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0184	Reference - Fans electrical annual consumption (kWh)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo

		Manual			
Field Label	Field Description	entry	eQuest DOE-2	IES	EnergyPlus
Output-0185	Reference - Fans natural gas annual consumption (kWh)		BEPS & Calculation	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0186	Reference - Fans energy use intensity (kWh/m2-yr)		BEPS & Calculation	Reports\PRM\UseDemand	Calculated from ABUPS
Output-0187	Reference - fans - interior ventilation energy type		BEPS & Calculation	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0188	Reference - fans - interior ventilation consumption - model output	x4 orient	BEPS & Calculation	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0189	Reference - fans - interior ventilation demand - model output x4 o	rientation		Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0190	Reference - fans - parking garage energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0191	Reference - fans - parking garage consumption - model output x4 o	orientatio	N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0192	Reference - fans - parking garage demand - model output x4 orien	tation	N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0193	Reference - fans - kitchen ventilation energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0194	Reference - fans - kitchen ventilation consumption - model output	x4 orient	ation	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0195	Reference - fans - kitchen ventilation demand - model output x4 o	rientation		Reports\PRM\UseDemand	DEUCS: End Uses by Subc
Output-0196	Reference - Service Hot Water total annual energy usage (kWh, M.	1)	BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0197	Reference - Service Hot Water electrical annual consumption (kWh	1)	BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0198	Reference - Service Hot Water natural gas annual consumption (kV	Vh)	BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0199	Reference - Service Hot Water energy use intensity (kWh/m2-yr)		BEPS & Calculation	Reports\PRM\UseDemand	Calculated from ABUPS
Output-0200	Reference - service water heating energy type		Inferred	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0201	Reference - service water heating consumption - model output x4	orientatio	BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0202	Reference - service water heating demand - model output x4 orier	tation		Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0203	Reference - IT equipment energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0204	Reference - IT equipment consumption - model output x4 orientat	ion	N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0205	Reference - IT equipment demand - model output x4 orientation		N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0206	Reference - refrigeration equipment energy type		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0207	Reference - refrigeration equipment consumption - model output	x4 orienta	BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0208	Reference - refrigeration equipment demand - model output x4 or	ientation		Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0209	Reference - cooking energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0210	Reference - cooking consumption - model output x4 orientation		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0211	Reference - cooking demand - model output x4 orientation		N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0212	Reference - industrial process energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0213	Reference - industrial process consumption - model output x4 orie	ntation	N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0214	Reference - industrial process demand - model output x4 orientati	on	N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0215	Reference - elevators and escalators energy type		N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0216	Reference - elevators and escalators consumption - model output	x4 orienta	N/A	Reports\PRM\UseDemand	ABUPS: End Uses by Subo
Output-0217	Reference - elevators and escalators demand - model output x4 or	ientation	N/A	Reports\PRM\UseDemand	DEUCS: End Uses by Subo
Output-0218	Reference - heat pump supplementary energy type		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0219	Reference - heat pump supplementary consumption - model outpo	ut x4 oriei	BEPS	Reports\PRM\UseDemand	ABUPS: End Uses by Subc
Output-0220	Reference - heat pump supplementary demand - model output x4	orientatio	n	Reports\PRM\UseDemand	ECPDM: Custom Monthly
Output-0221	Reference - Total peak demand summer (kW)			Reports\PRM\UseDemand	Calculated from ECPDM /

		Manual			
Field Label	Field Description	entry	eQuest DOE-2	IES	EnergyPlus
Output-0222	Reference - Total peak demand winter (kW)			Reports\PRM\UseDemand	Calculated from ECPDM /
Output-0223	Reference - Peak Electric Demand			Reports\PRM\UseDemand	ECPDM: Custom Monthly
Output-0224	Reference - Hourly electricity consumption data (kWh)				
Output-0225	Reference - HVAC Auxilary (kWh)		BEPS	Reports\PRM\UseDemand	Calculated from ABUPS: E
Output-0226	Reference - Misc Electrical (kWh)		BEPS	Reports\PRM\UseDemand	Calculated from ABUPS: E
Output-0227	Reference - Other Energy Use 1 (kWh)				
Output-0228	Reference - Other Energy Use 2 (kWh)				
Output-0229	Reference - Total - Electric (MJ)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses
Output-0230	Reference - Total - Natural Gas (m3),(MJ)		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses
Output-0231	Reference - Total - Oil / Other fuels (MJ)		N/A	Reports\PRM\UseDemand	ABUPS: End Uses
Output-0232	Reference - Total Annual Energy		BEPS	Reports\PRM\UseDemand	ABUPS: Site and Source E
Output-0233	Reference - Total Annual Energy Cost		ES-D	Reports\PRM\UseDemand	ERSR: Annual Cost
Output-0234	Reference - Total Annual CO2 Emissions		Calculated	Reports\PRM\UseDemand	Calculated from ABUPS: E
Output-0235	Reference - annual energy cost - electricity - model output x4 orie	ntation	ES-D	Reports\PRM\UseDemand	ERSR: Annual Cost
Output-0236	Reference - annual energy cost - natural gas - model output x4 ori	entation	ES-D	Reports\PRM\UseDemand	ERSR: Annual Cost
Output-0237	Reference - annual energy cost - district cooling - model output x4	orientatio	N/A	Reports\PRM\UseDemand	ERSR: Annual Cost
Output-0238	Electric GHGs		Calculated	Calculated from Reports\PRM\UseDemand	Calculated from ABUPS: E
Output-0239	Gas GHGs		Calculated	Calculated from Reports\PRM\UseDemand	Calculated from ABUPS: E
Output-0240	Energy Modelling Software	Υ			
Output-0241	% Energy Use Reduction		Calculated	Reports\PRM\UseDemand	Calculated
Output-0242	% Energy Cost Reduction		Calculated	Reports\PRM\UseDemand	Calculated
Output-0243	Proposed Electricity Cost		ES-D	Reports\PRM\UseDemand	ERSR: Annual Cost
Output-0244	Proposed Natural Gas Cost		ES-D	Reports\PRM\UseDemand	ERSR: Annual Cost
Output-0245	Proposed Oil / Other Fuel Cost		N/A	Reports\PRM\UseDemand	ERSR: Annual Cost
Output-0246	Proposed Renewables Cost		N/A	Reports\PRM\UseDemand	
Output-0247	Reference Electricity Cost		ES-D	Reports\PRM\UseDemand	ERSR: Annual Cost
Output-0248	Reference Natural Gas Cost		ES-D	Reports\PRM\UseDemand	ERSR: Annual Cost
Output-0249	Reference Oil / Other fuels Cost		N/A	Reports\PRM\UseDemand	ERSR: Annual Cost
Output-0250	Windows Usi		LV-D	Calculated from Reports\PRM\UseDemand	Calculated from Envelope
Output-0251	Walls (Above Grade) Rsi		LV-D	Reports\PRM\UseDemand	Envelope Summary: Exter
Output-0252	Roof Rsi		LV-D	Calculated from Reports\PRM\UseDemand	Calculated from Envelope
Output-0253	Average Enclosure Above Grade Rsi		LV-D	Calculated from Reports\PRM\UseDemand	Calculated from Envelope
Output-0254	Walls (Below Grade) Rsi		LV-D	Calculated from Reports\PRM\UseDemand	Calculated from Envelope
Output-0255	Window SHGC		LV-D	Reports\PRM\UseDemand	Envelope Summary: Exter
Output-0256	Windows Tvis		LV-D	Reports\PRM\UseDemand	Envelope Summary: Exter
Output-0257	North Surface Area - Walls Including Windows		LV-D	Reports\PRM\UseDemand	IVRS: Window-Wall Ratio
Output-0258	East Surface Area - Walls Including Windows		LV-D	Reports\PRM\UseDemand	IVRS: Window-Wall Ratio

		Manual			
Field Label	Field Description	entry	eQuest DOE-2	IES	EnergyPlus
Output-0259	South Surface Area - Walls Including Windows		LV-D	Reports\PRM\UseDemand	IVRS: Window-Wall Ratio
Output-0260	West Surface Area - Walls Including Windows		LV-D	Reports\PRM\UseDemand	IVRS: Window-Wall Ratio
Output-0261	Roof Surface Area - Roof Including Skylights		LV-D	Reports\PRM\UseDemand	IVRS: Skylight-Roof Ratio
Output-0262	North Surface Area - Windows		LV-D	Reports\PRM\UseDemand	IVRS: Window-Wall Ratio
Output-0263	East Surface Area - Windows		LV-D	Reports\PRM\UseDemand	IVRS: Window-Wall Ratio
Output-0264	South Surface Area - Windows		LV-D	Reports\PRM\UseDemand	IVRS: Window-Wall Ratio
Output-0265	West Surface Area - Windows		LV-D	Reports\PRM\UseDemand	IVRS: Window-Wall Ratio
Output-0266	Roof Surface Area - Skylights		LV-D	Reports\PRM\UseDemand	IVRS: Skylight-Roof Ratio
Output-0267	Window to Wall Ratio		Calculated	Reports\PRM\UseDemand	IVRS: Window-Wall Ratio
Output-0268	Volume		LV-B Building Total	Reports\PRM\UseDemand	IVRS: Zone Summary
Output-0269	Underground Wall (m2)		LV-D	Reports\PRM\UseDemand	IVRS: Zone Summary
Output-0270	Soffits (m2)				
Output-0271	Interior LPD (W/m2)		LV-B	Reports\PRM\UseDemand	IVRS: Zone Summary
Output-0272	Total People #		LV-B		Calculated from IVRS: Zor
Output-0273	Equipment Load Density (W/m2)		LV-B	Reports\PRM\UseDemand	IVRS: Zone Summary
Output-0274	Max cooling load excluding OA		Calculated		
Output-0275	Max heating load excluding OA		Calculated		
Output-0276	Max cooling load including OA		Calculated		
Output-0277	Max heating load including OA		Calculated		
Output-0278	Heating System Level - Capacity (kW)		Calculated		Equipment Summary: He
Output-0279	Heating System Level - Efficiency (%)		Calculated	Reports\PRM\VistaReport (Load/fuel)	Equipment Summary: He
Output-0280	Heating Plant Level - Capacity (kW)		Calculated		Equipment Summary: Cer
Output-0281	Heating Plant Level - Efficiency (%)		Calculated	Reports\PRM\VistaReport (Load/fuel)	Equipment Summary: Cer
Output-0282	Weighted Average Heating Efficiency		Calculated		
Output-0283	Cooling System Level - Capacity (kW)		Calculated		Equipment Summary: Co
Output-0284	Cooling System Level - Efficiency (%)		Calculated	Reports\PRM\VistaReport (Load/fuel)	Equipment Summary: Co
Output-0285	Cooling Plant Level - Capacity (kW)		Calculated		Equipment Summary: Cei
Output-0286	Cooling Plant Level - Efficiency (%)		Calculated	Reports\PRM\VistaReport (Load/fuel)	Equipment Summary: Cer
Output-0287	Weighted Average Cooling Efficiency		Calculated		
Output-0288	Primary Heating Source	Υ			
Output-0289	Primary Cooling Source	Υ			
Output-0290	Primary Ventilation System Type	Y			
Output-0291	Total Supply Air (m3/s)		SV-A		
Output-0292	Total Outside Air (m3/s)		SV-A		
Output-0293	Total Fan Load (kW)		SV-A	Calculated from Reports\PRM\UseDemand	
Output-0294	VSD on Fans	Υ			
Output-0295	Economizer	Υ			

		Manual			
Field Label	Field Description	entry	eQuest DOE-2	IES	EnergyPlus
Output-0296	VSD on Pumps	Υ			
Output-0297	Heat Recovery	Y			
Output-0298	Heat Recovery (% effectiveness)	Y			
Output-0299	Lighting Occupancy Sensors	Y			
Output-0300	Lighting Daylight Sensors	Y			
Output-0301	Primary Lighting Fixture Type	Y			
Output-0302	Seconadary Lighting Fixture Type	Y			
Output-0303	LEED Version	Y			
Output-0304	Level of Certification	Y			
Output-0305	Certified	Y			
	Total LEED points achieved	Y			
Output-0307	Total LEED points available	Y			
Output-0308	EAc1 Reference Standard	Υ			
Output-0309	% MRc2	Y			
Output-0310	% MRc4	Y			
Output-0311	% MRc5	Y			
Output-0312	EAc5 Pursued	Y			
Output-0313	EAc1 Points Available	Y			
Output-0314	EAc1 Points Achieved	Y			
Output-0315	% Irrigation Reduction (WEc1)	Υ			
Output-0316	% In-Building Reduction (WEc3)	Y			
Output-0317	Total In-Building Potable Water Use (L/yr)	Y			
Output-0318	Total In-Building Grey Water Use (L/yr)	Y			
Output-0319	Incremental cost of equipment	Y			
Output-0320	Incremental cost of labour	Y			
Output-0321	Incremental cost of energy assessments	Y			
Output-0322	Incremental cost of design	Y			
Output-0323	Incremental cost of project management	Y			
Output-0324	Incremental cost of shipping	Y			
Output-0325	Incremental cost of documentation	Υ			
Output-0326	LLT Option followed	Υ			
Output-0327	Floor Area - Assembly	Υ		Reports\PRM\UseDemand	
Output-0328	Floor Area - Health/Institutional	Υ		Reports\PRM\UseDemand	
Output-0329	Floor Area - Hotel/Motel	Υ		Reports\PRM\UseDemand	
Output-0330	Floor Area - Light Manufacturing	Υ		Reports\PRM\UseDemand	
Output-0331	Floor Area - Multifamily	Υ		Reports\PRM\UseDemand	
Output-0332	Floor Area - Office	Υ		Reports\PRM\UseDemand	

		Manual			
Field Label	Field Description	entry	eQuest DOE-2	IES	EnergyPlus
Output-0333	Floor Area - Restaurant	Υ		Reports\PRM\UseDemand	
Output-0334	Floor Area - Retail	Y		Reports\PRM\UseDemand	
Output-0335	Floor Area - School	Y		Reports\PRM\UseDemand	
Output-0336	Floor Area - Warehouse	Y		Reports\PRM\UseDemand	
Output-0337	Floor Area - Other	Y		Reports\PRM\UseDemand	
Output-0338	Proposed Building Description	Υ			
Output-0339	HVAC System Description - Reference Bldg Design	Υ			
Output-0340	HVAC System Description - Proposed Design	Υ			
Output-0341	Energy Efficiency Features in Proposed Design	Υ			
Output-0342	Select Fuel - Service water heating		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses
Output-0343	Select Fuel - Space cooling		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses
Output-0344	Select Fuel - Space heating fuel		BEPS	Reports\PRM\UseDemand	ABUPS: End Uses
Output-0345	Select Fuel - Renewable energy fuel		N/A	Reports\PRM\UseDemand	N/A
Output-0346	Renewable energy costs (MJ)		N/A	Reports\PRM\UseDemand	N/A
Output-0347	Renewable REC system	Υ			
Output-0348	Select Fuel - Energy credit		N/A	N/A	N/A
Output-0349	Energy credit costs (MJ)		N/A	N/A	N/A
Output-0350	Energy credit REC system	Υ			
Output-0351	Electricity consumption units	Υ			
Output-0352	Electricity demand units	Υ			
Output-0353	Electricity Utility Rate Name	Υ			
Output-0354	Electricity Utility Rate Structure	Υ			
Output-0355	Natural Gas consumption units	Y			
Output-0356	Natural Gas demand units	Y			
Output-0357	Natural Gas Utility Rate Name	Υ			
Output-0358	Natural Gas Utility Rate Structure	Y			
Output-0359	District Cooling consumption units	Y			
Output-0360	District Cooling demand units	Y			
Output-0361	District Cooling Utility Rate Name	Υ			
Output-0362	District Cooling Utility Rate Structure	Υ			
Output-0363	Site energy consumption unit used	Υ			
Output-0364	Source energy consumption unit used	Υ			
Output-0365	On-site renewable energy systems? (Y/N)	Υ			
Output-0366	Renewable System - type	Υ			
Output-0367	Renewable - Offset energy type	Υ			
Output-0368	Renewable - Rated capacity	Υ			
Output-0369	Renewable - Annual site energy generated	Y			

		Manual			
Field Label	Field Description	entry	eQuest DOE-2	IES	EnergyPlus
Output-0370	Renewable - Annual energy cost offset (\$/year)	Υ			
Output-0371	Exceptional methods? (Y/N)	Υ			
Output-0372	Exceptional method - calculation ID	Υ			
Output-0373	Exceptional method - Energy type				
Output-0374	Exceptional method - Add to baseline / subtract from proposed				
Output-0375	Exceptional method - Site energy				
Output-0376	Exceptional method - Annual energy cost difference				
Output-0377	Interior lighting unregulated?	Υ			
Output-0378	Exterior lighting unregulated?	Υ			
Output-0379	Space heating unregulated?	Υ			
Output-0380	Space cooling unregulated?	Υ			
Output-0381	Pumps unregulated?	Υ			
Output-0382	Heat rejection unregulated?	Υ			
Output-0383	Fans - interior ventilation unregulated?	Υ			
Output-0384	Fans - parking garage unregulated?	Υ			
Output-0385	Service water heating unregulated?	Υ			
Output-0386	Receptacle equipment unregulated?	Υ			
Output-0387	IT equipment unregulated?	Υ			
Output-0388	Interior lighting - process unregulated?	Υ			
Output-0389	Refrigeration equipment unregulated?	Υ			
Output-0390	Fans - kitchen ventilation unregulated?	Υ			
Output-0391	Cooking unregulated?	Υ			
Output-0392	Industrial process unregulated?	Υ			
Output-0393	Elevators and escalators unregulated?	Υ			
Output-0394	Heat pump supplementary unregulated?	Υ			
Output-0395	Reference - reporting strategy	Υ			
Output-0396	Reference - unmet heating hours			DetailedTables	ABUPS: Comfort and Setp
Output-0397	Proposed - unmet heating hours			DetailedTables	ABUPS: Comfort and Setp
Output-0398	Reference - unmet cooling hours			DetailedTables	ABUPS: Comfort and Setp
Output-0399	Proposed - unmet cooling hours			DetailedTables	ABUPS: Comfort and Setp
Output-0400	TEDI				
Output-0401	Infiltration				
Output-0402	EUI				

APPENDIX B: USE CASE DIAGRAM AND SYSTEM FLOWCHART

Energy Model Data Harvester - Use Case Diagram

2017-05-01

Application Folder

- Edit the Project Setup Workbook "4_setup.xlsx"
 - · Add each project to be harvested
 - Select desired Program Output Forms
 - Enter Project Background Information (manual entry items from matrix)
- Save and exit
- Create a folder for each project inside of the "1_Projects" folder.
- Insert required energy model files into project folders
- Run the "5_run.exe" executable
 - First, this will read the Project Setup Workbook to determine the projects to be analyzed and the desired outputs
 - Project data files will be parsed and requested output files will be created
- A log containing all messages, warnings, and errors will be created in the "3_log" folder
- A file containing a summary of all projects will be created in the "2_Outputs" folder
- A subfolder for each project will be created in the "2_Outputs" folder that that will contain the requested output files

Energy Model Data Harvester - System Flowchart 2017-05-01

APPENDIX C: SOURCE CODE

```
File - fdf.py
 1 import fdfgen
 2 import subprocess
 3 import os
 4 import tempfile
 7 def fdf(template, fields, output):
 8
 9
       fdf_file = fdfgen.forge_fdf('', fields)
10
       handle, tmp_file = tempfile.mkstemp()
11
12
       f = open(tmp_file, 'wb')
13
       f.write(fdf_file)
14
       f.close()
15
16
       subprocess.run(["pdftk", "templates/"+template, "fill_form", tmp_file, "output", output
   ])
17
18
       os.close(handle)
19
       os.remove(tmp_file)
20
```

```
1 from bs4 import BeautifulSoup
 2 from units import Area, Energy, Power, Currency
 4
 5 def splitUp(table):
       output = []
 6
 7
       outputRow = []
 8
       for row in table.findAll('tr'):
 9
           for column in row.findAll(['th','td']):
10
               outputRow.append(' '.join(column.findAll(text=True)))
11
           output.append(outputRow)
           outputRow = []
12
13
       return output
14
15
16 def spaceSummaryParse(table):
17
       output = {}
18
19
       #Check units
20
       header = table[0]
21
       for column in header[1:]:
           if column[-3:] != 'm 2': print('spaceSummaryParse area units error!:',column)
22
23
24
       for row in table[2:]:
25
           output[row[0]] = {'conditioned':Area(row[1],'m2'),
26
                              'unconditioned':Area(row[2],'m2'),
27
                              'total':Area(row[3],'m2')}
28
       return output
29
30
31 def prmParse(table):
32
33
       energy = []
34
       demand = []
35
36
       body = table[1:-2]
37
38
       for row in body[:-2]:
39
           if ' '.join(row[3].split(' ')[:-1]).strip() == 'Energy use':
40
               energy.append(row)
41
           elif ' '.join(row[3].split(' ')[:-1]).strip() == 'Demand':
42
               demand.append(row)
43
44
       energyOutput = {}
45
       demandOutput = {}
46
47
       for row in energy:
48
           process = row[1] == 'Yes'
49
           units = row[3].split('')[-1]
50
51
           energyOutput[row[0]] = {'process':process,
52
                                     'type':row[2],
53
                                     'proposed':Energy(row[4],units),
54
                                     'reference':Energy(row[6],units),}
55
56
       for row in demand:
```

File - ies.py

```
57
            units = row[3].split('')[-1]
 58
 59
            demandOutput[row[0]] = {'process':process,
 60
                                     'type':row[2],
 61
                                     'proposed': Power(row[4], units),
 62
                                     'reference':Power(row[6],units),}
 63
 64
        return energyOutput, demandOutput
 65
 66
 67 def economicsParse(table):
 68
        energy = \{\}
 69
        cost = {}
 70
 71
 72
        costUnits = table[1][1][4:].strip('( )')
 73
        for row in table[2:]:
 74
            cost[row[0]] = {
 75
                 'proposed': Currency(row[3],costUnits),
 76
                 'reference':Currency(row[5],costUnits),
 77
            }
 78
        for row in table[2:]:
 79
 80
            if row[1]: energyUnits = row[1]
 81
            else: energyUnits = 'kwh'
 82
            energy[row[0]] = {
 83
 84
                 'proposed': Energy(row[2],energyUnits),
                 'reference':Energy(row[4],energyUnits),
 85
            }
 86
 87
 88
        return energy, cost
 89
 90
 91 def isIES(file):
 92
        with open (file) as f:
 93
            html_doc = f.read()
 94
        soup = BeautifulSoup(html_doc, 'html.parser')
 95
 96
 97
        if soup.find(class ='iestext'):
 98
            return True
 99
        else: return False
100
101
102 def iesParse(file):
103
        with open(file) as f:
            html_doc = f.read()
104
105
106
        soup = BeautifulSoup(html_doc, 'html.parser')
107
108
        spaceSummary = soup.findAll(text='1.2 - Space Summary')[-1].parent.parent.parent.
    next_sibling.find('table')
109
        prm = soup.find(id='tableprmcompliance')
110
        economics = soup.find(text='1.8.2 (b) Energy Cost & Consumption by energy Type - PRM
    Compliance').parent.parent.next_sibling.find('table')
```

File - ies.py

```
111
112
        spaceSummary = splitUp(spaceSummary)[:-1]
113
        prm = splitUp(prm)
        economics = splitUp(economics)
114
115
        spaceSummary = spaceSummaryParse(spaceSummary)
116
117
        prmEnergy,prmDemand = prmParse(prm)
118
        economicsEnergy, economicsCost = economicsParse(economics)
119
120
        return { 'spaceSummary':spaceSummary, 'prmEnergy':prmEnergy, 'prmDemand':prmDemand,'
    economicsEnergy':economicsEnergy,'economicsCost':economicsCost}
121
```

```
1 import fdf
 2.
 3 def obc(p,output_file_path):
 4
       remaining = [
 5
           ('Interior Lighting', 'test7'),
 6
           ('Other 2', 'test8'),
 7
           ('1_3', 'test9'),
 8
           ('2_3', 'test10'),
 9
10
           ('Building Energy 7', 'test17'),
           ('Building Energy 8', 'test18'),
11
12
           ('Units 7', 'test25'),
13
           ('Units 8', 'test26'),
14
15
           ('', 'test30'),
16
           ('2_6', 'test33'),
17
           ('Percentage less CO2e emissions by proposed building', 'test34'),
18
           ('undefined_7', 'test35'),
19
           ('undefined_9', 'test36'),
20
21
22
23
       fields = []
24
25
       if p.prop_int_lights_total: fields.append(('Building Energy 6', '{:,.0f}'.format(p.
   prop_int_lights_total.get('kwh'))))
26
       if p.prop_space_heat_total: fields.append(('Building Energy 1','{:,.0f}'.format(p.
   prop_space_heat_total.get('kwh'))))
27
       if p.prop_space_cool_total: fields.append(('Building Energy 2', '{:,.0f}'.format(p.
   prop_space_cool_total.get('kwh'))))
       if p.prop_vent_fans_total: fields.append(('Building Energy 3', '{:,.0f}'.format(p.
28
   prop_vent_fans_total.get('kwh')))
29
       if p.prop_misc_total: fields.append(('Building Energy 4','{:,.0f}'.format(p.
   prop_misc_total.get('kwh'))))
       if p.prop_dhw_total: fields.append(('Building Energy 5','{:,.0f}'.format(p.
30
   prop_dhw_total.get('kwh'))))
31
       if p.prop_energy_total: fields.append(('undefined_5', '{:,.0f}'.format(p.
   prop_energy_total.get('kwh'))))
32
       if p.prop_carbon_total: fields.append(('1_6','{:,.0f}'.format(p.prop_carbon_total.get('
   kg'))))
33
       if p.prop_cost_total: fields.append(('fill_63','{:,.0f}'.format(p.prop_cost_total)))
34
       # if p.: fields.append(('','{:,.0f}'.format(p..get('kwh'))))
35
36
       if p.ref_int_lights_total : fields.append(('Energy 6', '{:,.0f}'.format(p.
   ref int lights total.get('kwh'))))
37
       if p.ref_space_heat_total: fields.append(('Energy 1', '{:,.0f}'.format(p.
   ref_space_heat_total.get('kwh'))))
38
       if p.ref_space_cool_total: fields.append(('Energy 2', '{:,.0f}'.format(p.
   ref_space_cool_total.get('kwh'))))
39
       if p.ref_vent_fans_total: fields.append(('Energy 3', '{:,.0f}'.format(p.
   ref_vent_fans_total.get('kwh'))))
       if p.ref_misc_total: fields.append(('Energy 4', '{:,.0f}'.format(p.ref_misc_total.get('
40
  kwh'))))
41
       if p.ref_dhw_total: fields.append(('Energy 5','{:,.0f}'.format(p.ref_dhw_total.get('kwh
   • ) ) ) )
42
       if p.ref_energy_total: fields.append(('undefined_4', '{:,.0f}'.format(p.ref_energy_total)
```

```
File - obc.py
42 .get('kwh'))))
       if p.ref_energy_total: fields.append(('Percentage less energy used', '{:,.1%}'.format(1
   -p.prop_energy_total.get()/p.ref_energy_total.get())))
       if p.ref_carbon_total: fields.append(('Total Annual CO2e Emissions','{:,.0f}'.format(p.
44
   ref_carbon_total.get('kg'))))
       if p.ref_cost_total: fields.append(('fill_62','{:,.0f}'.format(p.ref_cost_total)))
45
       # if p.: fields.append(('','{:,.0f}'.format(p..get('kwh'))))
46
47
48
49
50
       fields.append(('Units 1', 'kWh'))
51
       fields.append(('Units 2', 'kWh'))
       fields.append(('Units 3', 'kWh'))
52
53
       fields.append(('Units 4', 'kWh'))
54
       fields.append(('Units 5', 'kWh'))
55
       fields.append(('Units 6', 'kWh'))
56
       fields.append(('undefined_6', 'kWh'))
57
       fields.append(('undefined_10b', 'kg'))
58
59
60
61
       fdf.fdf('OBC_SB-10.pdf', fields, output_file_path)
62
```

```
1 import openpyxl
 2.
 3 from openpyxl.chart import (
       PieChart,
 4
 5
       Reference
 6)
 7
 8 def sbd(p,output_filepath):
 9
10
       wb = openpyxl.load_workbook('templates/sbd.xlsx')
11
       ws = wb.active
12
13
14
       ws['C4'] = p.prop_area_lights_total.get('kwh')
15
       ws['D4'] = p.prop_misc_total.get('kwh')
16
       ws['E4'] = p.prop_space_heat_total.get('kwh')
17
       ws['F4'] = p.prop_space_cool_total.get('kwh')
18
       ws['G4'] = p.prop_vent_fans_total.get('kwh')
19
       ws['H4'] = p.prop_dhw_total.get('kwh')
20
       ws['L3'] = p.prop_energy_total.get('kwh')
21
       ws['L4'] = p.prop_carbon_total.get('kg')
22
23
       if p.reference:
24
           ws['C3'] = p.ref area lights total.get('kwh')
25
           ws['D3'] = p.ref_misc_total.get('kwh')
26
           ws['E3'] = p.ref_space_heat_total.get('kwh')
27
           ws['F3'] = p.ref_space_cool_total.get('kwh')
28
           ws['G3'] = p.ref_vent_fans_total.get('kwh')
29
           ws['H3'] = p.ref_dhw_total.get('kwh')
30
31
           ws['K3'] = p.ref_energy_total.get('kwh')
32
           ws['K4'] = p.ref_carbon_total.get('kg')
33
34
35
36
37
       pie = PieChart()
38
       pie.width = 18.8468
39
       pie.height = 7.62
40
41
       labels = Reference(ws,min col=3,max col=8,min row=2)
42
       data = Reference(ws,min_col=3,max_col=8,min_row=3)
43
       pie.add data(data,from rows=True)
44
       pie.set_categories(labels)
45
       pie.title = "SB-10 Reference Building"
46
47
       ws.add_chart(pie, "B6")
48
49
       pie2 = PieChart()
50
       pie2.width = 18.8468
51
       pie2.height = 7.62
52
       data2 = Reference(ws,min_col=3,max_col=8,min_row=4)
53
       pie2.add_data(data2,from_rows=True)
54
       pie2.set_categories(labels)
55
       pie2.title = "SBD Building"
56
```

File - sbd.py	
57	ws.add_chart(pie2,"B22")
58 59	wb.save(output_filepath)
60	
61	
62	

```
1 import fdf, datetime, pprint
 2.
 4 def tgs(p, output_filepath):
 6
       fields = []
 7
 8
       remaining = [
 9
           ('prop_summer_demand', 'test35'),
10
           ('prop_winter_demand', 'test39'),
11
12
           ('ref_pump_elec', 'test55'),
           ('ref_pump_eui', 'test56'),
13
14
           ('ref_pump_gas', 'test57'),
15
16
           ('ref_summer_demand', 'test58'),
17
18
           ('ref_winter_demand', 'test62'),
19
           ('savings_energy_percent', 'test63'),
20
           ('savings_energy_total', 'test64'),
21
           ('savings summer demand', 'test65'),
22
           ('savings_winter_demand', 'test66'),
23
       ]
24
25
       if p.spaNumber: fields.append(('spa_number', p.spaNumber))
26
       if p.architectCompany: fields.append(('architect_company', p.architectCompany))
27
       if p.architectEmail: fields.append(('architect_email', p.architectEmail))
28
       if p.architectName: fields.append(('architect_name', p.architectName))
29
       if p.architectPhone: fields.append(('architect_phone', p.architectPhone))
30
       if p.architectTitle: fields.append(('architect_title', p.architectTitle))
31
       if p.buildingType: fields.append(('building_type', p.buildingType))
32
       if p.codeCompliancePath: fields.append(('code_compliance_path', p.codeCompliancePath))
33
       if p.modellerCompany: fields.append(('modeller_company', p.modellerCompany))
34
       if p.modellerEmail: fields.append(('modeller_email', p.modellerEmail))
       if p.modellerName: fields.append(('modeller_name', p.modellerName))
35
36
       if p.modellerPhone: fields.append(('modeller_phone', p.modellerPhone))
       if p.modellerTitle: fields.append(('modeller_title', p.modellerTitle))
37
38
       if p.buildingArea: fields.append(('building_area', '{:,.0f}'.format(p.buildingArea.get())
   'm2'))+' m2'))
39
       if p.projectAddress: fields.append(('project_address', p.projectAddress))
40
41
       if p.prop_dhw_elec: fields.append(('prop_dhw_elec', '{:,.0f}'.format(p.prop_dhw_elec.
   get('kwh'))))
42
       if p.prop_dhw_total: fields.append(('prop_dhw_eui', '{:,.2f}'.format(p.prop_dhw_total.
   get('kwh')/p.buildingArea.get('m2'))))
43
       if p.prop_dhw_gas: fields.append(('prop_dhw_gas', '{:,.0f}'.format(p.prop_dhw_gas.get('
   kwh'))))
44
       if p.prop_area_lights_elec: fields.append(('prop_lights_elec', '{:,.0f}'.format(p.
   prop_area_lights_elec.get('kwh'))))
45
       if p.prop_area_lights_total: fields.append(('prop_lights_eui', '{:,.2f}'.format(p.
   prop_area_lights_total.get('kwh')/p.buildingArea.get('m2'))))
46
       if p.prop_area_lights_gas: fields.append(('prop_lights_gas', '{:,.0f}'.format(p.
   prop_area_lights_gas.get('kwh'))))
47
       if p.prop_vent_fans_elec: fields.append(('prop_fans_elec', '{:,.0f}'.format(p.
   prop_vent_fans_elec.get('kwh'))))
48
       if p.prop_vent_fans_total: fields.append(('prop_fans_eui', '{:,.2f}'.format(p.
```

```
48 prop_vent_fans_total.get('kwh')/p.buildingArea.get('m2'))))
       if p.prop_vent_fans_gas: fields.append(('prop_fans_gas', '{:,.0f}'.format(p.
  prop_vent_fans_gas.get('kwh')))
       if p.prop_space_heat_elec: fields.append(('prop_heat_elec', '{:,.0f}'.format(p.
   prop_space_heat_elec.get('kwh'))))
       if p.prop_space_heat_total: fields.append(('prop_heat_eui', '{:,.2f}'.format(p.
  prop_space_heat_total.get('kwh')/p.buildingArea.get('m2'))))
52
       if p.prop_space_heat_gas: fields.append(('prop_heat_gas', '{:,.0f}'.format(p.
  prop_space_heat_gas.get('kwh'))))
       if p.prop_space_cool_elec: fields.append(('prop_cool_elec', '{:,.0f}'.format(p.
53
  prop_space_cool_elec.get('kwh'))))
54
       if p.prop_space_cool_total: fields.append(('prop_cool_eui', '{:,.2f}'.format(p.
   prop_space_cool_total.get('kwh')/p.buildingArea.get('m2'))))
55
       if p.prop_space_cool_gas: fields.append(('prop_cool_gas', '{:,.0f}'.format(p.
  prop_space_cool_gas.get('kwh'))))
       if p.prop_misc_elec: fields.append(('prop_misc_elec', '{:,.0f}'.format(p.
56
   prop_misc_elec.get('kwh'))))
57
       if p.prop_misc_total: fields.append(('prop_misc_eui', '{:,.2f}'.format(p.
  prop_misc_total.get('kwh')/p.buildingArea.get('m2'))))
58
       if p.prop_misc_gas: fields.append(('prop_misc_gas', '{:,.0f}'.format(p.prop_misc_gas.
  get('kwh'))))
59
       if p.prop_elec_total: fields.append(('prop_total_elec', '{:,.0f}'.format(p.
  prop_elec_total.get('kwh'))))
       if p.prop_energy_total: fields.append(('prop_total_eui', '{:,.2f}'.format(p.
  prop_energy_total.get('kwh')/p.buildingArea.get('m2'))))
       if p.prop_gas_total: fields.append(('prop_total_gas', '{:,.0f}'.format(p.
61
  prop_gas_total.get('kwh')))
       if p.prop_pumps_elec: fields.append(('prop_pump_elec', '{:,.0f}'.format(p.
62
  prop_pumps_elec.get('kwh'))))
       if p.prop_pumps_total: fields.append(('prop_pump_eui', '{:,.2f}'.format(p.
63
  prop_pumps_total.get('kwh')/p.buildingArea.get('m2'))))
64
       if p.prop_pumps_gas: fields.append(('prop_pump_gas', '{:,.0f}'.format(p.prop_pumps_gas)
   .get('kwh'))))
65
       # if p.: fields.append(('', p.))
66
67
       if p.ref_dhw_elec: fields.append(('ref_dhw_elec', '{:,.0f}'.format(p.ref_dhw_elec.get())
   'kwh'))))
68
       if p.ref_dhw_total: fields.append(('ref_dhw_eui', '{:,.2f}'.format(p.ref_dhw_total.get
   ('kwh')/p.buildingArea.get('m2'))))
       if p.ref_dhw_gas: fields.append(('ref_dhw_gas', '{:,.0f}'.format(p.ref_dhw_gas.get('
  kwh'))))
       if p.ref_area_lights_elec: fields.append(('ref_lights_elec', '{:,.0f}'.format(p.
  ref area lights elec.get('kwh'))))
       if p.ref_area_lights_total: fields.append(('ref_lights_eui', '{:,.2f}'.format(p.
  ref area lights total.get('kwh')/p.buildingArea.get('m2'))))
72
       if p.ref_area_lights_gas: fields.append(('ref_lights_gas', '{:,.0f}'.format(p.
   ref_area_lights_gas.get('kwh'))))
       if p.ref_vent_fans_elec: fields.append(('ref_fans_elec', '{:,.0f}'.format(p.
73
  ref_vent_fans_elec.get('kwh'))))
74
       if p.ref_vent_fans_total: fields.append(('ref_fans_eui', '{:,.2f}'.format(p.
   ref_vent_fans_total.get('kwh')/p.buildingArea.get('m2'))))
75
       if p.ref_vent_fans_gas: fields.append(('ref_fans_gas', '{:,.0f}'.format(p.
  ref_vent_fans_gas.get('kwh'))))
76
       if p.ref_space_heat_elec: fields.append(('ref_heat_elec', '{:,.0f}'.format(p.
  ref_space_heat_elec.get('kwh'))))
77
       if p.ref_space_heat_total: fields.append(('ref_heat_eui', '{:,.2f}'.format(p.
```

```
File - tgs.py
 77 ref_space_heat_total.get('kwh')/p.buildingArea.get('m2'))))
        if p.ref_space_heat_gas: fields.append(('ref_heat_gas', '{:,.0f}'.format(p.
    ref_space_heat_gas.get('kwh'))))
        if p.ref_space_cool_elec: fields.append(('ref_cool_elec', '{:,.0f}'.format(p.
    ref_space_cool_elec.get('kwh'))))
        if p.ref_space_cool_total: fields.append(('ref_cool_eui', '{:,.2f}'.format(p.
    ref_space_cool_total.get('kwh')/p.buildingArea.get('m2'))))
        if p.ref_space_cool_gas: fields.append(('ref_cool_gas', '{:,.0f}'.format(p.
    ref_space_cool_gas.get('kwh'))))
        if p.ref_misc_elec: fields.append(('ref_misc_elec', '{:,.0f}'.format(p.ref_misc_elec.
 82
    get('kwh'))))
        if p.ref_misc_total: fields.append(('ref_misc_eui', '{:,.2f}'.format(p.ref_misc_total.
 83
    get('kwh')/p.buildingArea.get('m2'))))
        if p.ref_misc_gas: fields.append(('ref_misc_gas', '{:,.0f}'.format(p.ref_misc_gas.get()))
 84
    'kwh'))))
        if p.ref_elec_total: fields.append(('ref_total_elec', '{:,.0f}'.format(p.
 85
    ref_elec_total.get('kwh'))))
 86
        if p.ref_energy_total: fields.append(('ref_total_eui', '{:,.2f}'.format(p.
    ref_energy_total.get('kwh')/p.buildingArea.get('m2'))))
 87
        if p.ref_gas_total: fields.append(('ref_total_gas', '{:,.0f}'.format(p.ref_gas_total.
    get('kwh'))))
 88
        if p.ref_pumps_elec: fields.append(('ref_pump_elec', '{:,.0f}'.format(p.ref_pumps_elec
    .get('kwh'))))
 89
        if p.ref_pumps_total: fields.append(('ref_pump_eui', '{:,.2f}'.format(p.
    ref_pumps_total.get('kwh')/p.buildingArea.get('m2'))))
        if p.ref_pumps_gas: fields.append(('ref_pump_gas', '{:,.0f}'.format(p.ref_pumps_gas.
 90
    get('kwh'))))
 91
        # if p.: fields.append(('', p.))
 92
 93
 94
        fields.append(('modelling_software', p.proposed.type))
 95
        fields.append(('date', datetime.datetime.today().strftime('%d/%m/%Y')))
 96
 97
 98
        fdf.fdf('TGS.pdf', fields, output_filepath)
 99
```

File - units.py

```
1 class Measure:
 2
       conversion = {}
 3
       default = None
 4
 5
       def __init__(self, quantity, units):
 6
 7
           self.units = units.lower()
 8
 9
           self.checkUnits(self.units)
10
11
12
13
           self.value = float(str(quantity).replace(',',''))*self.conversion[self.units]
14
15
       def __add__(self,other):
16
           if self.__class__ == other.__class__:
17
                return self.__class__(self.get()+other.get())
18
           elif other in [0,None]:
19
               return self
20
           else:
               return NotImplemented
21
22
23
       def __radd__(self,other):
24
           if other in [0,None]:
25
               return Energy(self.get())
26
           else:
27
                return NotImplemented
28
29
       def get(self,units=None):
30
           if units == None:
31
                units = self.default
32
           self.checkUnits(units)
33
           return self.value/self.conversion[units.lower()]
34
35
       def checkUnits(self,units):
36
           if units.lower() not in self.conversion.keys():
37
               print(units, "not in conversion dictionary")
38
39
40
41
       @classmethod
42
       def units(cls):
43
           return cls.conversion.keys()
44
45
46
47 class Energy(Measure):
48
       conversion = {
49
           'kwh':0.0036,
            'therm':0.10548,
50
51
            'gj':1,
52
            'mj':0.001,
53
            'mbtu':1.05505585
54
55
       default = 'gj'
56
       def __init__(self, quantity, units=default):
```

```
57
            super().__init__(quantity,units)
 58
 59 class Power(Measure):
        conversion = {
 61
             'mw':1000000,
            'kw':1000,
 62
 63
            'w':1,
 64
            'btu/h': 0.29307107,
 65
            'kbtu/h': 293.07107
 66
            }
 67
        default = 'w'
 68
        def __init__(self, quantity, units=default):
 69
            super().__init__(quantity,units)
 70
 71 class Area(Measure):
 72
        conversion = {
 73
            'ft2':0.092903,
 74
            'm2':1
 75
            }
 76
        default = 'm2'
 77
        def __init__(self, quantity, units=default):
 78
            super().__init__(quantity,units)
 79
 80 class Volume(Measure):
        conversion = {
 82
            'ft3':0.092903,
            'm3':1
 83
 84
 85
        default = 'm3'
 86
        def __init__(self, quantity, units=default):
 87
            super().__init__(quantity,units)
 88
 89 class Flow(Measure):
 90
        conversion = {
 91
            'cfm':0.471947,
 92
            '1/s': 1,
 93
            'm3/s':1,
 94
 95
        default = '1/s'
 96
 97
        def __init__(self, quantity, units=default):
 98
            super().__init__(quantity,units)
 99
100
101 class Currency(Measure):
102
        conversion = {
103
            '£': 1.69,
104
            'cad': 1,
105
        default = 'cad'
106
107
108
        def __init__(self, quantity, units=default):
109
            super().__init__(quantity,units)
110
111 class Mass(Measure):
112
        conversion = {
```

```
File - units.py
113
             'tonnes':10^6,
114
             'kg':1000,
             'g': 1,
115
116
         }
117
        default = 'g'
118
119
120
        def __init__(self, quantity, units=default):
             super().__init__(quantity, units)
121
122
123
124
125
126
```

```
1 import math
 2 from units import Energy, Area, Volume, Power, Flow
 4
 5 class SimFile:
 6
       def init (self, file):
 7
           self.fullFile = None
 8
           self.reports = None
 9
           self.equestVersion = None
10
11
           self.fullFile = self.load(file)
12
           self.reports = self.parse(self.fullFile)
13
           self.doeVersion = self.getDoeVersion()
14
15
       def load(self, file):
16
           with open(file, 'r') as f:
17
               return list(f)
18
19
       def parse(self, data):
20
           reports = []
21
           report = []
           for row in data:
22
23
               if row[0] != '\x0c':
24
                    report.append(row)
25
               else:
26
                    if report != []:
27
                        reports.append(Report(report))
28
                    report = [row]
29
           reports.append(Report(report))
30
           return reports
31
32
       def getDoeVersion(self):
33
           familiarVersions = ['DOE-2.1Ec133', 'DOE-2.2-47h2', 'DOE-2.2-48y']
34
35
           usedVersions = []
36
37
           for report in self.reports:
38
               if report.header:
39
40
                    if report.doeVersion not in familiarVersions:
41
                        print('Unfimiliar DOE version:', report.doeVersion)
42
                        break
43
                    if report.doeVersion not in usedVersions:
44
                        usedVersions.append(report.doeVersion)
45
46
           if len(usedVersions) > 1:
47
               print('Multiple eQuest Versions found:', usedVersions)
               return None
48
49
           elif len(usedVersions) == 1:
50
51
               return usedVersions[0]
52
53
           elif len(usedVersions) == 0:
54
               print('eQuest Version not found')
55
               return None
56
```

```
57 class Report:
 58
        def __init__(self, content):
 59
 60
            self.content = content
 61
            self.header = None
 62
            self.title = None
 63
            self.body = None
 64
            self.doeVersion = None
 65
            self.runDatetime = None
 66
 67
            if self.content[0].strip() == 'DOE-2
                                                    UNITS
                                                             TABLE ::
                self.title = 'DOE-2 UNITS TABLE'
 68
 69
                self.body = self.content[1:]
 70
            elif self.content[0].strip() == '':
 71
                if self.content[0].strip() == 'MESSAGE LIST FROM SYSTEMS
                                                                                PROGRAM':
 72
                    self.title = 'MESSAGE LIST FROM SYSTEMS PROGRAM'
 73
                    self.body = self.content[3:]
 74
            else:
                self.header = self.content[:4]
 75
 76
                self.title = self.header[2][8:12].strip()
 77
                self.body = self.content[4:]
 78
 79
            if self.header:
 80
                self.doeVersion = self.header[0][82:94].strip()
 81
 82
        def mergeHeaders(self, reports):
 83
            header = reports[0].header
 84
            if len(reports) > 1:
 85
                for report in reports:
 86
                    if report.header[:3] != header[:3]:
 87
                        print("Header Mismatch")
 88
            return header
 89
 90
        def mergeBodies(self, reports):
            merged = []
 91
 92
            [merged.extend(report.body) for report in reports]
 93
            return merged
 94
        def filterReports(self, reports, title):
 95
 96
            return [report for report in reports if report.title == title]
 97
 98
        def checkHeader(self, header, schema, reportTitle):
 99
            for column in schema:
100
                combined = ' '.join([row[column[2]:column[3]].strip() for row in header]).
    strip()
101
                if combined != column[0]: print(reportTitle, "Header Schema Error! Expected:",
     column[0], "Actual:",
102
                                                  combined)
103
104
        def trimAtRepeatedNewlines(self,lines,count):
105
            newLineCount = 0
106
            output = []
107
108
            for line in lines:
109
                if line == '\n':
110
                    newLineCount += 1
```

```
111
                else:
112
                    newLineCount = 0
113
                    output.append(line)
114
                if newLineCount == count:
115
                    break
116
            return output
117
118
        def removeBlankLines(self, lines):
119
            return [line for line in lines if line != '\n']
120
121 class LSC(Report):
122
        def __init__(self, simFile):
            self.simFile = simFile
123
124
            reports = simFile.reports
125
            self.lscReports = self.filterReports(reports, 'LS-C')
126
127
            if len(self.lscReports) > 1: print("Multiple LSC reports")
128
129
            self.header = self.lscReports[0].header
130
            self.body = self.lscReports[0].body
131
132
            self.coolingLoad, self.heatingLoad = self.lscParse()
133
134
        def lscParse(self):
135
136
            row = self.body[45]
137
            if row[0:26].strip() != 'TOTAL LOAD': print('LSC Header Error')
138
            if row[56:64].strip() != 'KW': print('LSC Units Error')
139
140
            if row[103:108].strip() != 'KW': print('LSC Units Error')
141
142
            coolingLoad = Power(row[46:56],'kw')
143
            heatingLoad = Power(row[93:103],'kw')
144
145
            return coolingLoad, heatingLoad
146
147 class SSD(Report):
148
        def __init__(self, simFile):
            self.simFile = simFile
149
150
            reports = simFile.reports
151
            self.ssdReports = self.filterReports(reports, 'SS-D')
152
153
            if len(self.ssdReports) > 1: print("Multiple SSD reports")
154
155
            self.header = self.ssdReports[0].header
156
            self.body = self.ssdReports[0].body
157
            self.coolingLoad, self.heatingLoad = self.ssdParse()
158
159
        def ssdParse(self):
160
161
162
            row = self.body[39]
163
164
            if row[0:3].strip() != 'MAX': print('SSD Header Error')
165
166
            coolingLoad = Power(row[38:52],'kbtu/h')
```

```
167
            heatingLoad = Power(row[89:103],'kbtu/h')
168
169
            return coolingLoad, heatingLoad
170
171 class PSC(Report):
172
        def init (self, simFile):
173
            self.simFile = simFile
174
            reports = simFile.reports
175
            self.pscReports = self.filterReports(reports,'PS-C')
176
177
            self.header = self.mergeHeaders(self.pscReports)
178
            self.body = self.mergeBodies(self.pscReports)
179
180
            self.boilers, self.chillers = self.pscParse()
181
182
            self.boilerLoad = sum([boiler[1] for boiler in self.boilers])
183
            self.boilerElectricity = sum([boiler[2] for boiler in self.boilers])
184
            self.boilerFuel = sum([boiler[3] for boiler in self.boilers])
185
            if self.chillers:
186
                self.chillerLoad = sum([chiller[1] for chiller in self.chillers])
187
188
                self.chillerElectricity = sum([chiller[2] for chiller in self.chillers])
189
                self.chillerFuel = sum([chiller[3] for chiller in self.chillers])
190
191
            else:
                self.chillerLoad = Energy(0,'mbtu')
192
193
                self.chillerElectricity = Energy(0,'kwh')
194
                self.chillerFuel = Energy(0,'mbtu')
195
196
        def pscParse(self):
197
            table = self.trimAtRepeatedNewlines(self.body, 3)
198
199
            header = table[:3]
200
            body = table[4:]
201
            output = []
202
203
            outputRow = []
204
            if self.simFile.doeVersion[4:7] == '2.1':
205
206
                headerSchema = [
207
                    ('ANNUAL LOAD (MBTU)','',90,99),
208
                    ('ELEC USED (KWH)', '', 108, 117),
                    ('THERMAL USED (MBTU)', '', 117, 127),
209
210
                ]
211
                boilerList = ['HW-BOILER']
212
                chillerList = ['OPEN-CENT-CHLR','OPEN-REC-CHLR','DBUN-CHLR']
                ignoreList = ['COOLING-TWR']
213
214
                bodySchema = headerSchema[:]
                bodySchema.insert(0, ('Name','',0,16))
215
216
                self.checkHeader(header,headerSchema,'PS-C')
217
218
219
                boilers = []
220
                chillers = []
221
222
                for i,v in enumerate(body):
```

```
223
                     if i % 2 == 0:
224
                         for i2,v2 in enumerate(bodySchema):
225
                             value = v[v2[2]:v2[3]]
226
                             if i2 in [1,3]:
227
                                 outputRow.append(Energy(value, 'mbtu'))
228
                             elif i2 == 2:
229
                                 outputRow.append(Energy(value,'kwh'))
230
                             elif i2 == 0:
231
                                 outputRow.append(value.strip())
232
                         if outputRow[0] in boilerList:
233
                             boilers.append(outputRow)
234
                         elif outputRow[0] in chillerList:
235
                             chillers.append(outputRow)
                         elif outputRow[0] in ignoreList:
236
237
                             pass
238
                         else:
239
                             print("Unrecognized Equipment:",outputRow[0])
240
                         outputRow = []
241
242
                output = (boilers,chillers)
243
244
            elif self.simFile.doeVersion[4:7] == '2.2':
245
                headerSchema = [
246
                     ('COOL LOAD (MBTU) (KBTU/HR)', '', 11, 21),
247
                     ('HEAT LOAD (MBTU) (KBTU/HR)', '', 23, 33),
                     ('ELEC USE (KWH) (KW)', '', 35, 45),
248
249
                     ('FUEL USE (MBTU) (KBTU/HR)', '', 47, 57),
250
                ]
251
                bodySchema = headerSchema[:]
252
                boilerList = ['boiler']
253
                chillerList = ['chiller']
254
                ignoreList = ['tower','cooling','dhw','wh','dw']
255
256
                self.checkHeader(header,headerSchema,'PS-C')
257
                boilers = []
258
259
                chillers = []
260
261
                for i,v in enumerate(body):
262
                    mod = i % 4
263
                     if mod == 0:
264
                         outputRow.append(v[0:32].strip())
265
                     elif mod == 1:
266
                         for column in bodySchema:
267
                             if v[column[2]:column[3]].strip() == '':
268
                                 outputRow.append(0)
269
                             else:
270
                                 outputRow.append(abs(float(v[column[2]:column[3]])))
271
                         output.append(outputRow)
272
                         outputRow = []
273
                     continue
274
275
                output = [row for row in output if row[1] or row[2] ] #remove pumps (equipment
     with no loads)
276
277
                for item in output:
```

```
278
                     identified = False
279
                    name = item[0].lower()
280
281
                     for boiler in boilerList:
282
                         if boiler in name:
283
                             boilers.append(item)
284
                             identified = True
285
                             break
286
                     for chiller in chillerList:
287
288
                         if chiller in name:
289
                             chillers.append(item)
290
                             identified = True
                             break
291
292
293
                     for ignore in ignoreList:
294
                         if ignore in name:
                             identified = True
295
296
                             break
297
298
                     if not identified:
299
                         if not item[1]:
300
                             boilers.append(item)
301
                             identified = True
302
                             continue
303
                     if not identified:
304
305
                         if float(item[2]) == 0:
306
                             chillers.append(item)
307
                             identified = True
                             continue
308
309
310
                boilers = [[boiler[0], Energy(boiler[1]+boiler[2], 'mbtu'), Energy(boiler[3], 'kwh
    '), Energy(boiler[4], 'mbtu')] for boiler in boilers]
311
                chillers = [[chiller[0], Energy(chiller[1]+chiller[2], 'mbtu'), Energy(chiller[3]
    ],'kwh'), Energy(chiller[4],'mbtu')] for chiller in chillers]
312
313
                output = (boilers, chillers)
314
315
            return output
316
317 class SSH(Report):
        def __init__(self, simFile):
318
319
            self.simFile = simFile
320
            reports = simFile.reports
321
            self.sshReports = self.filterReports(reports,'SS-H')
322
323
            self.parsed = self.sshParse()
324
325
            # for system in self.parsed:
326
327
        def sshParse(self):
328
329
            header1Schema = [
330
                 ('- -F A N E L E C - - -', '', 0, 29),
331
                 ('- -F U E L
                                H E A T - -', '', 32, 55),
```

```
332
                 ('- -F U E L C O O L- -','',58,81),
333
                ('-E L E C H E A T- -','',84,105),
334
                ('-E L E C C O O L- -','', 108,129)
335
            1
336
            header2Schema = [
337
                ('MAXIMUM FAN LOAD (KW)','',17,29),
338
                ('MAXIMUM GAS OIL LOAD (KBTU/HR)','',42,55),
339
                 ('MAXIMUM GAS OIL LOAD (KBTU/HR)','',68,81),
340
                 ('MAXIMUM ELECTRIC LOAD (KW)', '', 93, 105),
341
                 ('MAXIMUM ELECTRIC LOAD (KW)','',117,129),
342
343
            bodySchema = header2Schema[:]
344
            if self.simFile.doeVersion[4:7] == '2.1':
345
346
                titleSlice = slice(46,92)
347
            elif self.simFile.doeVersion[4:7] == '2.2':
348
                titleSlice = slice(42,92)
349
350
            output = []
351
            for system in self.sshReports:
352
353
354
                outputRow = []
355
356
                outputRow.append(system.header[2][titleSlice].strip())
357
358
                table = self.removeBlankLines(system.body)
359
                self.checkHeader([table[0]],header1Schema,'SS-H')
                self.checkHeader(table[1:5],header2Schema,'SS-H')
360
361
362
                maxRow = table[19]
363
364
                for i,v in enumerate(bodySchema):
365
                    value = \max Row[v[2]:v[3]]
366
                    if i in [0,3,4]: outputRow.append(Power(value, 'kw'))
367
                    elif i in [1,2]: outputRow.append(Power(value,'kbtu/h'))
368
369
                output.append(outputRow)
370
371
            return output
372
373 class SVA(Report):
374
        def __init__(self,simFile):
375
            self.simFile = simFile
376
            reports = simFile.reports
377
            self.svaReports = self.filterReports(reports,'SV-A')
378
379
            self.parsed = self.svaParse()
380
381
        def svaParse(self):
382
383
            header1Schema = [
384
                 ('CAPACITY (CFM )', '', 9, 19),
385
            ]
386
387
            header2Schema = [
```

```
388
                 ('OUTSIDE AIR RATIO', '', 41,52 ),
389
                 ('COOLING EIR (BTU/BTU)', '',85,96),
390
                 ('HEATING EIR (BTU/BTU)', '',96,107),
391
            1
392
393
            body1Schema = header1Schema[:]
394
            body2Schema = header2Schema[:]
395
396
            if self.simFile.doeVersion[4:7] == '2.1':
397
                titleSlice = slice(38, 92)
398
            elif self.simFile.doeVersion[4:7] == '2.2':
399
                titleSlice = slice(41, 92)
400
401
            output = []
402
            parsedSystems = []
403
404
            for system in self.svaReports:
405
406
                outputRow = []
407
408
                table = self.removeBlankLines(system.body)
409
                contentRow1 = table[7]
410
                contentRow2 = table[3]
411
412
                title = system.header[2][titleSlice].strip()
413
414
                if title in parsedSystems:
415
                     parsedSystems.append(title)
416
                     continue
417
418
                if contentRow2[0:8].strip() in ['FPH','SUM']:
419
                     continue
420
421
                parsedSystems.append(title)
422
423
                outputRow.append(title)
424
425
                self.checkHeader(table[4:7], header1Schema, 'SV-A')
426
427
                self.checkHeader(table[0:3], header2Schema, 'SV-A')
428
429
430
431
                for i, v in enumerate(body1Schema):
432
                     value = contentRow1[v[2]:v[3]]
433
                     outputRow.append(Flow(value,'cfm'))
434
435
                for i,v in enumerate(body2Schema):
436
                     value = contentRow2[v[2]:v[3]]
437
                     outputRow.append(value)
438
439
                output.append(outputRow)
440
441
            return output
442
443 class LVB(Report):
```

```
444
        def __init__(self, simFile):
445
            self.simFile = simFile
446
            reports = simFile.reports
447
            self.lvbReports = self.filterReports(reports, 'LV-B')
448
449
            self.header = self.mergeHeaders(self.lvbReports)
450
            self.body = self.mergeBodies(self.lvbReports)
451
452
            self.parsed, self.totals = self.parseLVB()
453
454
            self.people, self.grossArea, self.grossVolume = self.totals
455
456
            self.parsedExcluded = [row for row in self.parsed if not self.excludePlenums(row)]
457
458
            self.netArea = Area(sum([row[1] * row[9] for row in self.parsedExcluded]), 'ft2')
            self.netVolume = Volume(sum([row[1] * row[10] for row in self.parsedExcluded]), '
459
    ft3')
460
461
            self.lightingPower = Power(sum([row[1] * row[4] * row[9] for row in self.
    parsedExcluded]), 'w')
            self.equipmentPower = Power(sum([row[1] * row[6] * row[9] for row in self.
462
    parsedExcluded]), 'w')
463
464
        def parseLVB(self):
465
466
            headerSchema21 = [
467
                ('SPACE', 'Space Name', 0, 12),
                ('SPACE*FLOOR MULTIPLIER', 'Multiplier', 12, 23),
468
469
                ('SPACE TYPE', 'Space Type', 26, 31),
470
                ('AZIMUTH', 'Azimuth', 33, 40),
471
                ('LIGHTING (WATT / SQFT )', 'Lighting Intensity', 41, 49),
472
                ('PEOPLE', 'People', 52, 58),
473
                ('EQUIP (WATT / SQFT )', 'Equipment Intensity', 61, 68),
                ('INFILTRATION METHOD', 'Infiltration Method', 70, 82),
474
475
                ('AIR CHANGES PER HOUR', 'Air Changes', 84, 95),
476
                ('AREA (SQFT )', 'Area', 95, 109),
477
                ('VOLUME (CUFT )', 'Volume', 109, 124)
478
            1
479
480
            headerSchema22 = [
                ('SPACE', 'Space Name', 0, 29),
481
482
                ('SPACE*FLOOR MULTIPLIER', 'Multiplier', 29, 40),
483
                ('SPACE TYPE', 'Space Type', 41, 46),
484
                ('AZIM', 'Azimuth', 46, 53),
485
                ('LIGHTS (WATT / SQFT )', 'Lighting Intensity', 53, 61),
                ('PEOPLE', 'People', 61, 68),
486
                ('EQUIP (WATT / SQFT )', 'Equipment Intensity', 68, 76),
487
                ('INFILTRATION METHOD', 'Infiltration Method', 76, 89),
488
489
                ('ACH', 'Air Changes', 89, 95),
490
                ('AREA (SQFT )', 'Area', 95, 107),
                ('VOLUME (CUFT )', 'Volume', 107, 120)
491
492
            1
493
494
            bodySchema21, bodySchema22 = headerSchema21[:], headerSchema22[:]
495
            bodySchema21[0] = (bodySchema22[0][0], bodySchema22[0][1], 0, 16)
496
```

```
497
            bodySchema21[1] = (bodySchema22[1][0], bodySchema22[1][1], 16, bodySchema21[1][3])
498
499
            bodySchema22[0] = (bodySchema22[0][0], bodySchema22[0][1], 0, 32)
500
            bodySchema22[1] = (bodySchema22[1][0], bodySchema22[1][1], 32, bodySchema22[1][3])
501
502
            if self.simFile.doeVersion[4:7] == '2.1':
503
                headerSchema, bodySchema = headerSchema21, bodySchema21
            elif self.simFile.doeVersion[4:7] == '2.2':
504
505
                headerSchema, bodySchema = headerSchema22, bodySchema22
506
507
            table = self.removeBlankLines(self.body)
508
            tableHeader = table[1:4]
509
            tableBody = table[4:-2]
510
511
            self.checkHeader(tableHeader, headerSchema, 'LV-B')
512
513
            output = []
514
            outputRow = []
515
516
            for line in tableBody:
517
                if line[0:16] == 'Spaces on floor:': continue
518
519
520
                for i, v in enumerate(bodySchema):
521
                    value = line[v[2]:v[3]].strip()
                    if i in [1, 3, 4, 5, 6, 8, 9, 10]:
522
523
                        value = float(value)
524
                    outputRow.append(value)
525
                output.append(outputRow)
526
                outputRow = []
527
528
            totals = table[-1]
529
530
            totalSchema = [v for i, v in enumerate(bodySchema) if i in [5, 9, 10]]
531
532
            totalOutput = []
533
534
            for i, v in enumerate(totalSchema):
535
                totalOutput.append(float(totals[v[2]:v[3]]))
536
537
            return output, totalOutput
538
539
        def excludePlenums(self, row):
540
541
            plenums = ['plenum', 'plnm']
542
543
            for plenum in plenums:
544
                if plenum in row[0].lower():
545
                    # print("Assumed Plenum (plenum in name):",row[0],)
546
                    return True
547
548
            if row[10] / row[9] < 6:
549
                # print("Assumed Plenum (too short):",row[0], row[10]/row[9])
                return True
550
551
552
            return False
```

```
553
554 class LVD(Report):
555
        def __init__(self, simFile):
            reports = simFile.reports
556
            self.lvdReports = self.filterReports(reports, 'LV-D')
557
558
559
            self.summary = self.lvdReports[-1]
560
561
            self.summaryHeader = self.summary.header
            self.summaryBody = self.summary.body
562
563
564
            self.parsed = self.parseLVD()
565
566
            self.northWallArea = sum([row[5] for row in self.parsed if row[0] in ['NORTH', '
   NORTH-EAST'])
            self.northWindowArea = sum([row[4] for row in self.parsed if row[0] in ['NORTH', '
567
   NORTH-EAST']])
            self.eastWallArea = sum([row[5] for row in self.parsed if row[0] in ['EAST', '
568
    SOUTH-EAST'])
569
            self.eastWindowArea = sum([row[4] for row in self.parsed if row[0] in ['EAST', '
    SOUTH-EAST'])
570
            self.southWallArea = sum([row[5] for row in self.parsed if row[0] in ['SOUTH', '
    SOUTH-WEST']])
            self.southWindowArea = sum([row[4] for row in self.parsed if row[0] in ['SOUTH', '
571
    SOUTH-WEST']])
            self.westWallArea = sum([row[5] for row in self.parsed if row[0] in ['WEST', '
573
            self.westWindowArea = sum([row[4] for row in self.parsed if row[0] in ['WEST', '
   NORTH-WEST']])
574
575
            self.roofArea = [row[5] for row in self.parsed if row[0] == "ROOF"][0]
576
            self.skylightArea = [row[4] for row in self.parsed if row[0] == "ROOF"][0]
577
578
            self.undergroundWallArea = sum([row[5] for row in self.parsed if row[0] == "
    UNDERGRND"])
579
580
            self.windowU = [row[1] for row in self.parsed if row[0] == "WALLS+ROOFS"][0]
581
            self.wallAboveU = [row[2] for row in self.parsed if row[0] == "ALL WALLS"][0]
582
            self.wallBelowU = sum([row[2] for row in self.parsed if row[0] == "UNDERGRND"])
583
            self.roofU = [row[2] for row in self.parsed if row[0] == "ROOF"][0]
            self.enclosureAboveU = [row[3] for row in self.parsed if row[0] == "WALLS+ROOFS"][
584
    0.1
585
586
        def parseLVD(self):
587
588
            headerSchema = [
                ('AVERAGE U-VALUE/WINDOWS (BTU/HR-SQFT-F)', 'Window U-Value', 0, 35),
589
590
                ('AVERAGE U-VALUE/WALLS (BTU/HR-SQFT-F)', 'Wall U-Value', 40, 55),
591
                ('AVERAGE U-VALUE WALLS+WINDOWS (BTU/HR-SQFT-F)', 'Window+Wall U-Value', 60,
    75),
                ('WINDOW AREA (SQFT)', 'Window Area', 77, 90),
592
593
                ('WALL AREA (SQFT)', 'Wall Area', 91, 105),
594
                ('WINDOW+WALL AREA (SQFT)', 'Window+Wall Area', 106, 125)
595
            ]
596
597
            bodySchema = headerSchema[:]
```

```
598
            bodySchema[0] = (bodySchema[0][0], bodySchema[0][1], 20, 35)
599
            bodySchema.insert(0, ('Classifier', 'Classifier', 0, 20))
600
601
            table = self.removeBlankLines(self.summaryBody)
602
            tableHeaders = table[:3]
            tableBody = table[3:]
603
604
605
            for column in headerSchema:
                combined = ' '.join([row[column[2]:column[3]].strip() for row in tableHeaders]
606
    ).strip()
607
                if combined != column[0]: print("LV-D Header Schema Error! Expected:", column[
    0], "Actual:", combined)
608
609
            output = []
610
            outputRow = []
611
612
            for line in tableBody:
613
                for i, v in enumerate(bodySchema):
614
                    value = line[v[2]:v[3]].strip()
                    if i != 0:
615
                         value = float(value)
616
617
                    outputRow.append(value)
618
                output.append(outputRow)
619
                outputRow = []
620
621
            return output
622
623 class BEPU(Report):
624
        def init (self, simFile):
625
            reports = simFile.reports
626
            self.bepureports = self.filterReports(reports, 'BEPU')
627
628
            if len(self.bepureports) > 1:
629
                print("Multiple BEPU reports")
630
631
            self.header = self.bepureports[0].header
632
            self.body = self.bepureports[0].body
633
634
            self.lightsElec = None
635
            self.lightsGas = None
636
            self.equipElec = None
637
            self.equipGas = None
638
            self.spaceHeatElec = None
639
            self.spaceHeatGas = None
640
            self.spaceCoolElec = None
641
            self.spaceCoolGas = None
642
            self.heatRejectElec = None
            self.heatRejectGas = None
643
644
            self.pumpsElec = None
645
            self.pumpsGas = None
            self.fansElec = None
646
647
            self.fansGas = None
648
            self.dhwElec = None
649
            self.dhwGas = None
650
651
            if simFile.doeVersion[4:7] == '2.1':
```

```
652
                self.parsed = self.parse21()
653
654
                self.lightsElec = Energy(self.parsed[0][2], self.parsed[0][1])
                self.lightsGas = Energy(self.parsed[1][2], self.parsed[1][1])
655
                self.equipElec = Energy(self.parsed[0][3], self.parsed[0][1])
656
657
                self.equipGas = Energy(self.parsed[1][3], self.parsed[1][1])
658
                self.spaceHeatElec = Energy(self.parsed[0][4], self.parsed[0][1])
659
                self.spaceHeatGas = Energy(self.parsed[1][4], self.parsed[1][1])
660
                self.spaceCoolElec = Energy(self.parsed[0][5], self.parsed[0][1])
                self.spaceCoolGas = Energy(self.parsed[1][5], self.parsed[1][1])
661
                self.heatRejectElec = Energy(self.parsed[0][6], self.parsed[0][1])
662
663
                self.heatRejectGas = Energy(self.parsed[1][6], self.parsed[1][1])
664
                self.pumpsElec = Energy(self.parsed[0][7], self.parsed[0][1])
665
                self.pumpsGas = Energy(self.parsed[1][7], self.parsed[1][1])
666
                self.fansElec = Energy(self.parsed[0][8], self.parsed[0][1])
                self.fansGas = Energy(self.parsed[1][8], self.parsed[1][1])
667
668
                self.dhwElec = Energy(self.parsed[0][9], self.parsed[0][1])
669
                self.dhwGas = Energy(self.parsed[1][9], self.parsed[1][1])
670
671
            elif simFile.doeVersion[4:7] == '2.2':
672
673
                self.parsed = self.parse22()
674
675
                self.areaLightsElec = sum([Energy(row[3], row[2]) for row in self.parsed if
    row[1] == 'ELECTRICITY'])
                self.areaLightsGas = sum([Energy(row[3], row[2]) for row in self.parsed if row
    [1] == 'NATURAL-GAS'])
677
                self.taskLightsElec = sum([Energy(row[4], row[2]) for row in self.parsed if
    row[1] == 'ELECTRICITY'])
678
                self.taskLightsGas = sum([Energy(row[4], row[2]) for row in self.parsed if row
    [1] == 'NATURAL-GAS'])
679
                self.equipElec = sum([Energy(row[5], row[2]) for row in self.parsed if row[1]
    == 'ELECTRICITY'])
680
                self.equipGas = sum([Energy(row[5], row[2]) for row in self.parsed if row[1]
    == 'NATURAL-GAS'])
681
                self.spaceHeatElec = sum([Energy(row[6], row[2]) for row in self.parsed if row
    [1] == 'ELECTRICITY'])
682
                self.spaceHeatGas = sum([Energy(row[6], row[2]) for row in self.parsed if row[
    1] == 'NATURAL-GAS'])
683
                self.spaceCoolElec = sum([Energy(row[7], row[2]) for row in self.parsed if row
    [1] == 'ELECTRICITY'])
                self.spaceCoolGas = sum([Energy(row[7], row[2]) for row in self.parsed if row[
    1] == 'NATURAL-GAS'])
685
                self.heatRejectElec = sum([Energy(row[8], row[2]) for row in self.parsed if
   row[1] == 'ELECTRICITY'])
686
                self.heatRejectGas = sum([Energy(row[8], row[2]) for row in self.parsed if row
    [1] == 'NATURAL-GAS'])
687
                self.pumpsElec = sum([Energy(row[9], row[2]) for row in self.parsed if row[1]
    == 'ELECTRICITY'])
688
                self.pumpsGas = sum([Energy(row[9], row[2]) for row in self.parsed if row[1]
    == 'NATURAL-GAS'])
                self.fansElec = sum([Energy(row[10], row[2]) for row in self.parsed if row[1]
689
    == 'ELECTRICITY'])
690
                self.fansGas = sum([Energy(row[10], row[2]) for row in self.parsed if row[1]
    == 'NATURAL-GAS'])
691
                self.refrigDisplayElec = sum([Energy(row[11], row[2]) for row in self.parsed
```

```
691 if row[1] == 'ELECTRICITY'])
                self.refrigDisplayGas = sum([Energy(row[11], row[2]) for row in self.parsed if
     row[1] == 'NATURAL-GAS'])
693
                self.htPumpElec = sum([Energy(row[12], row[2]) for row in self.parsed if row[1
    ] == 'ELECTRICITY'])
                self.htPumpGas = sum([Energy(row[12], row[2]) for row in self.parsed if row[1]
694
     == 'NATURAL-GAS'])
695
                self.dhwElec = sum([Energy(row[13], row[2]) for row in self.parsed if row[1]
    == 'ELECTRICITY'])
                self.dhwGas = sum([Energy(row[13], row[2]) for row in self.parsed if row[1] ==
696
     'NATURAL-GAS'])
697
                self.extElec = sum([Energy(row[14], row[2]) for row in self.parsed if row[1]
    == 'ELECTRICITY'])
698
                self.extGas = sum([Energy(row[14], row[2]) for row in self.parsed if row[1] ==
     'NATURAL-GAS'])
699
700
        def parse21(self):
701
702
            table = self.removeBlankLines(self.body)
703
704
            expectedHeadings = [
705
                (0, "ENERGY TYPE:", "Energy Type"),
706
                (1, "SITE UNITS:", "Site Units"),
707
                (4, "AREA LIGHTS", "Area Lights"),
708
                (5, "MISC EQUIPMT", "Miscellaneous Equipment"),
709
                (6, "SPACE HEAT", "Space Heating"),
710
                (7, "SPACE COOL", "Space Cooling"),
711
                (8, "HEAT REJECT", "Heat Rejection"),
712
                (9, "PUMPS & MISC", "Pumps and Miscellaneous"),
713
                (10, "VENT FANS", "Vent Fans"),
714
                (11, "DOMHOT WATER", "Domestic Hot Water"),
715
                (13, "TOTAL", "Total"),
716
            1
717
718
            for i in expectedHeadings:
719
                if table[i[0]][:47].strip() != i[1]: print(i[2], "not found in BEPU:",
720
                                                             "" + table[i[0]][:47].strip() +
    '" vs.', '"' + i[1] + '"')
721
722
            numberOfColumns = math.floor((len(table[0]) - 46) / 14)
723
724
            if numberOfColumns > 3:
725
                print("More than 3 columns in BEPU")
726
727
            output = []
728
            outputRow = []
729
            WIDTH = 14
730
731
732
            for column in range(numberOfColumns):
733
                start = 46 + WIDTH * column
734
                if column == numberOfColumns - 1:
735
                    end = len(table[row[0]])
736
                else:
737
                    end = 46 + WIDTH * (column + 1)
738
```

```
739
                for row in expectedHeadings:
740
                    outputRow.append(table[row[0]][start:end].strip())
741
                output.append(outputRow)
742
                outputRow = []
743
744
            if output[0][0] != 'ELECTRICITY': print("Electricity Column missing")
745
            if output[1][0] != 'NATURAL-GAS': print("Natural Gas Column missing")
746
            if numberOfColumns > 2:
747
                if output[2][0] != 'RECOVERED': print("Recovered Column missing")
748
749
            return output
750
751
        def parse22(self):
752
753
            table = self.trimAtRepeatedNewlines(self.body,3)
754
755
            expectedHeadings = [
756
                "LIGHTS",
757
                "TASK LIGHTS",
758
                "MISC EQUIP",
759
                "SPACE HEATING",
760
                "SPACE COOLING",
761
                "HEAT REJECT",
762
                "PUMPS & AUX",
763
                "VENT FANS",
764
                "REFRIG DISPLAY",
765
                "HT PUMP SUPPLEM",
766
                "DOMEST HOT WTR",
767
                "EXT USAGE",
768
                "TOTAL"
769
            ]
770
771
            meterUnits = ["ELECTRICITY", "NATURAL-GAS"]
772
773
            WIDTH = 9
774
            line1 = table[0][12:]
775
            line2 = table[1][12:]
776
777
            for i, v in enumerate(expectedHeadings):
778
                combined = (
                line1[i * WIDTH:(i + 1) * WIDTH].strip() + ' ' + line2[i * WIDTH:(i + 1) *
779
    WIDTH].strip()).strip()
780
                if combined != v: print("Heading Error! Expected:", v, "Actual:", combined)
781
782
            tableInterior = table[3:-2]
783
784
            output = []
785
            outputRow = []
786
787
            for i, v in enumerate(tableInterior):
788
                if i % 2 == 0:
789
                    outputRow.append(v[:5].strip())
790
                     if v[5:16] not in meterUnits:
791
                         print("Unrecognized meter units", v[5:16])
792
                    else:
793
                         outputRow.append(v[5:16].strip())
```

```
794
                else:
795
796
                    unit = v[:12].strip().lower()
797
                     if unit not in Energy.units(): print("Invalid unit in BEPS", unit)
798
                    outputRow.append(unit)
799
                    rest = v[12:]
800
                    for i, v in enumerate(expectedHeadings[:-1]):
801
                         outputRow.append(float(rest[i * WIDTH:(i + 1) * WIDTH].strip()))
802
                    outputRow.append(rest[(len(expectedHeadings) - 1) * WIDTH:].strip())
803
804
                    output.append(outputRow)
805
                     outputRow = []
806
807
            return output
808
809 class BEPS(Report):
        def __init__(self, simFile):
810
811
            reports = simFile.reports
812
            self.bepsreports = self.filterReports(reports, 'BEPS')
813
814
            if len(self.bepsreports) > 1:
815
                print("Multiple BEPS reports")
816
817
            self.header = self.bepsreports[0].header
818
            self.body = self.bepsreports[0].body
819
820
            self.areaLightsElec = None
821
            self.areaLightsGas = None
822
            self.equipElec = None
823
            self.equipGas = None
824
            self.spaceHeatElec = None
825
            self.spaceHeatGas = None
            self.spaceCoolElec = None
826
827
            self.spaceCoolGas = None
828
            self.heatRejectElec = None
829
            self.heatRejectGas = None
830
            self.pumpsElec = None
831
            self.pumpsGas = None
832
            self.fansElec = None
833
            self.fansGas = None
834
            self.dhwElec = None
835
            self.dhwGas = None
836
            self.taskLightsElec = None
837
            self.taskLightsGas = None
838
            self.refrigDisplayElec = None
839
            self.refrigDisplayGas = None
840
            self.htPumpElec = None
841
            self.htPumpGas = None
842
            self.extElec = None
843
            self.extGas = None
844
            self.elecTotal = None
845
            self.gasTotal = None
846
847
            if simFile.doeVersion[4:7] == '2.1':
848
                self.parsed = self.parse21()
849
```

```
850
                self.areaLightsElec = Energy(self.parsed[0][2], 'mbtu')
851
                self.areaLightsGas = Energy(self.parsed[1][2], 'mbtu')
852
                self.equipElec = Energy(self.parsed[0][3], 'mbtu')
                self.equipGas = Energy(self.parsed[1][3], 'mbtu')
853
854
                self.spaceHeatElec = Energy(self.parsed[0][4], 'mbtu')
855
                self.spaceHeatGas = Energy(self.parsed[1][4], 'mbtu')
856
                self.spaceCoolElec = Energy(self.parsed[0][5], 'mbtu')
857
                self.spaceCoolGas = Energy(self.parsed[1][5], 'mbtu')
858
                self.heatRejectElec = Energy(self.parsed[0][6], 'mbtu')
859
                self.heatRejectGas = Energy(self.parsed[1][6], 'mbtu')
                self.pumpsElec = Energy(self.parsed[0][7], 'mbtu')
860
861
                self.pumpsGas = Energy(self.parsed[1][7], 'mbtu')
862
                self.fansElec = Energy(self.parsed[0][8], 'mbtu')
863
                self.fansGas = Energy(self.parsed[1][8], 'mbtu')
864
                self.dhwElec = Energy(self.parsed[0][9], 'mbtu')
865
                self.dhwGas = Energy(self.parsed[1][9], 'mbtu')
866
                self.elecTotal = Energy(self.parsed[0][10], 'mbtu')
867
                self.gasTotal = Energy(self.parsed[1][10], 'mbtu')
868
869
            elif simFile.doeVersion[4:7] == '2.2':
870
                self.parsed = self.parse22()
871
872
                self.areaLightsElec = sum([Energy(row[3], row[2]) for row in self.parsed if
   row[1] == 'ELECTRICITY'])
873
                self.areaLightsGas = sum([Energy(row[3], row[2]) for row in self.parsed if row
    [1] == 'NATURAL-GAS'])
874
                self.taskLightsElec = sum([Energy(row[4], row[2]) for row in self.parsed if
    row[1] == 'ELECTRICITY'])
                self.taskLightsGas = sum([Energy(row[4], row[2]) for row in self.parsed if row
875
    [1] == 'NATURAL-GAS'])
                self.equipElec = sum([Energy(row[5], row[2]) for row in self.parsed if row[1]
876
    == 'ELECTRICITY'])
                self.equipGas = sum([Energy(row[5], row[2]) for row in self.parsed if row[1]
877
    == 'NATURAL-GAS'])
878
                self.spaceHeatElec = sum([Energy(row[6], row[2]) for row in self.parsed if row
    [1] == 'ELECTRICITY'])
879
                self.spaceHeatGas = sum([Energy(row[6], row[2]) for row in self.parsed if row[
    1] == 'NATURAL-GAS'])
                self.spaceCoolElec = sum([Energy(row[7], row[2]) for row in self.parsed if row
880
    [1] == 'ELECTRICITY'])
                self.spaceCoolGas = sum([Energy(row[7], row[2]) for row in self.parsed if row[
881
    1] == 'NATURAL-GAS'])
                self.heatRejectElec = sum([Energy(row[8], row[2]) for row in self.parsed if
882
   row[1] == 'ELECTRICITY'])
883
                self.heatRejectGas = sum([Energy(row[8], row[2]) for row in self.parsed if row
    [1] == 'NATURAL-GAS'])
884
                self.pumpsElec = sum([Energy(row[9], row[2]) for row in self.parsed if row[1]
    == 'ELECTRICITY'])
                self.pumpsGas = sum([Energy(row[9], row[2]) for row in self.parsed if row[1]
885
    == 'NATURAL-GAS'])
886
                self.fansElec = sum([Energy(row[10], row[2]) for row in self.parsed if row[1]
    == 'ELECTRICITY'])
                self.fansGas = sum([Energy(row[10], row[2]) for row in self.parsed if row[1]
887
    == 'NATURAL-GAS'])
                self.refrigDisplayElec = sum([Energy(row[11], row[2]) for row in self.parsed
888
    if row[1] == 'ELECTRICITY'])
```

```
889
                self.refrigDisplayGas = sum([Energy(row[11], row[2]) for row in self.parsed if
     row[1] == 'NATURAL-GAS'])
                self.htPumpElec = sum([Energy(row[12], row[2]) for row in self.parsed if row[1
890
    ] == 'ELECTRICITY'])
                self.htPumpGas = sum([Energy(row[12], row[2]) for row in self.parsed if row[1]
891
     == 'NATURAL-GAS'])
892
                self.dhwElec = sum([Energy(row[13], row[2]) for row in self.parsed if row[1]
    == 'ELECTRICITY'])
893
                self.dhwGas = sum([Energy(row[13], row[2]) for row in self.parsed if row[1] ==
     'NATURAL-GAS'])
                self.extElec = sum([Energy(row[14], row[2]) for row in self.parsed if row[1]
894
    == 'ELECTRICITY'])
895
                self.extGas = sum([Energy(row[14], row[2]) for row in self.parsed if row[1] ==
     'NATURAL-GAS'])
896
                self.elecTotal = sum([Energy(row[15], row[2]) for row in self.parsed if row[1]
     == 'ELECTRICITY'])
897
                self.gasTotal = sum([Energy(row[15], row[2]) for row in self.parsed if row[1]
    == 'NATURAL-GAS'])
898
899
        def parse21(self):
900
901
            table = self.removeBlankLines(self.body)
902
903
            expectedHeadings = [
904
                (0, "ENERGY TYPE:", "Energy Type"),
                (1, "UNITS: MBTU", "UNITS: MBTU"),
905
906
                (4, "AREA LIGHTS", "Area Lights"),
                (5, "MISC EQUIPMT", "Miscellaneous Equipment"),
907
908
                (6, "SPACE HEAT", "Space Heating"),
                (7, "SPACE COOL", "Space Cooling"),
909
910
                (8, "HEAT REJECT", "Heat Rejection"),
911
                (9, "PUMPS & MISC", "Pumps and Miscellaneous"),
912
                (10, "VENT FANS", "Vent Fans"),
913
                (11, "DOMHOT WATER", "Domestic Hot Water"),
914
                (13, "TOTAL", "Total"),
915
            1
916
917
            for i in expectedHeadings:
918
                if table[i[0]][:47].strip() != i[1]: print(i[2], "not found in BEPS:",
919
                                                             "" + table[i[0]][:47].strip() +
    "" vs.', '"' + i[1] + '"')
920
921
            numberOfColumns = math.floor((len(table[0]) - 46) / 14)
922
923
            if numberOfColumns > 3:
924
                print("More than 3 columns in BEPU")
925
926
            output = []
            outputRow = []
927
928
            WIDTH = 14
929
930
931
            for column in range(numberOfColumns):
932
                start = 46 + WIDTH * column
933
                if column == numberOfColumns - 1:
934
                    end = len(table[row[0]])
```

```
935
                else:
936
                     end = 46 + WIDTH * (column + 1)
937
938
                for row in expectedHeadings:
939
                     outputRow.append(table[row[0]][start:end].strip())
940
                output.append(outputRow)
941
                outputRow = []
942
943
            if output[0][0] != 'ELECTRICITY': print("Electricity Column missing")
944
            if output[1][0] != 'NATURAL-GAS': print("Natural Gas Column missing")
945
            if numberOfColumns > 2:
                if output[2][0] != 'RECOVERED': print("Recovered Column missing")
946
947
948
            return output
949
950
        def parse22(self):
951
952
            table = self.trimAtRepeatedNewlines(self.body, 3)
953
954
955
            expectedHeadings = [
956
                "LIGHTS",
957
                "TASK LIGHTS",
958
                "MISC EQUIP",
959
                "SPACE HEATING",
960
                "SPACE COOLING",
961
                "HEAT REJECT",
962
                "PUMPS & AUX",
                "VENT FANS",
963
964
                "REFRIG DISPLAY",
965
                "HT PUMP SUPPLEM",
966
                "DOMEST HOT WTR",
967
                "EXT USAGE",
968
                "TOTAL"
969
            ]
970
971
            meterUnits = ["ELECTRICITY", "NATURAL-GAS"]
972
973
            WIDTH = 9
974
            line1 = table[0][12:]
975
            line2 = table[1][12:]
976
977
            for i, v in enumerate(expectedHeadings):
978
                combined = (
                line1[i * WIDTH:(i + 1) * WIDTH].strip() + ' ' + line2[i * WIDTH:(i + 1) *
979
    WIDTH].strip()).strip()
980
                if combined != v: print("Heading Error! Expected:", v, "Actual:", combined)
981
982
            tableInterior = table[3:-2]
983
984
            output = []
985
            outputRow = []
986
987
            for i, v in enumerate(tableInterior):
988
                if i % 2 == 0:
                     outputRow.append(v[:5].strip())
989
```

```
990
                     if v[5:16] not in meterUnits:
 991
                         print("Unrecognized meter units", v[5:16])
 992
                     else:
                         outputRow.append(v[5:16].strip())
 993
 994
                 else:
 995
 996
                     unit = v[:12].strip().lower()
 997
                     if unit not in Energy.units(): print("Invalid unit in BEPS", unit)
 998
                     outputRow.append(unit)
 999
                     rest = v[12:]
1000
                     for i, v in enumerate(expectedHeadings[:-1]):
                          outputRow.append(float(rest[i * WIDTH:(i + 1) * WIDTH].strip()))
1001
1002
                     outputRow.append(rest[(len(expectedHeadings) - 1) * WIDTH:].strip())
1003
1004
                     output.append(outputRow)
1005
                     outputRow = []
1006
1007
             return output
1008
1009 class ESD(Report):
         def __init__(self, simFile):
1010
1011
             self.simFile = simFile
1012
             reports = simFile.reports
1013
1014
             self.esdreports = self.filterReports(reports, 'ES-D')
1015
1016
             if len(self.esdreports) > 1:
1017
                 print("Multiple ESD reports")
1018
1019
             self.header = self.esdreports[0].header
             self.body = self.esdreports[0].body
1020
1021
1022
             self.electricityCost = None
1023
             self.gasCost = None
             self.totalCost = None
1024
1025
1026
             self.parsed = self.parseESD()
1027
1028
             self.electricityCost = sum([row[5] for row in self.parsed if row[1] == "
     ELECTRICITY"])
1029
             self.qasCost = sum([row[5] for row in self.parsed if row[1] == "NATURAL-GAS"])
1030
             self.totalCost = self.electricityCost + self.gasCost
1031
1032
         def parseESD(self):
1033
1034
             table = self.trimAtRepeatedNewlines(self.body, 2)
1035
1036
             headerSchema21 = [
                 ('UTILITY-RATE', 'Utility Rate Name', 0, 16),
1037
1038
                 ('RESOURCE', 'Fuel Type', 20, 36),
                 ('METERS', 'Meter Name', 40, 51),
1039
                 ('METERED ENERGY UNITS/YR', 'Metered Energy', 55, 74),
1040
                 ('TOTAL CHARGE ($)', 'Total Charge', 78, 88),
1041
1042
                 ('VIRTUAL RATE ($/UNIT)', 'Virtual Rate', 92, 102),
1043
                 ('RATE USED ALL YEAR?', 'Rate Used All Year', 106, 115)
1044
             ]
```

```
1045
             headerSchema22 = [
                 ('UTILITY-RATE', 'Utility Rate Name', 0, 32),
1046
1047
                 ('RESOURCE', 'Fuel Type', 35, 51),
                 ('METERS', 'Meter Name', 54, 65),
1048
                 ('METERED ENERGY UNITS/YR', 'Metered Energy', 68, 87),
1049
1050
                 ('TOTAL CHARGE ($)', 'Total Charge', 90, 100),
1051
                 ('VIRTUAL RATE ($/UNIT)', 'Virtual Rate', 103, 113),
                 ('RATE USED ALL YEAR?', 'Rate Used All Year', 116, 125)
1052
1053
             ]
1054
1055
             bodySchema21 = headerSchema21[:]
1056
             bodySchema21[3] = ('METERED ENERGY UNITS/YR', 'Metered Energy Value', 55, 65)
             bodySchema21.insert(4, ('METERED ENERGY UNITS/YR', 'Metered Energy Units', 65, 74
1057
     ))
1058
1059
             bodySchema22 = headerSchema22[:]
1060
             bodySchema22[3] = ('METERED ENERGY UNITS/YR', 'Metered Energy Value', 68, 78)
1061
             bodySchema22.insert(4, ('METERED ENERGY UNITS/YR', 'Metered Energy Units', 78, 87
     ))
1062
             if self.simFile.doeVersion[4:7] == '2.1':
1063
1064
                 self.headerSchema, self.bodySchema = headerSchema21, bodySchema21
1065
1066
             elif self.simFile.doeVersion[4:7] == '2.2':
1067
                 self.headerSchema, self.bodySchema = headerSchema22, bodySchema22
1068
1069
             for row in self.headerSchema:
                 combined = ' '.join([i[row[2]:row[3]].strip() for i in table[:3]]).strip()
1070
                 if combined != row[0]: print("ESD Header Schema Error! Expected:", row[0], "
1071
     Actual:", combined)
1072
1073
             output = []
             outputRow = []
1074
1075
1076
             meterUnits = ["ELECTRICITY", "NATURAL-GAS"]
1077
             for row in table[4:-2]:
1078
                 for i, v in enumerate(self.bodySchema):
1079
1080
                     value = row[v[2]:v[3]].strip()
1081
                     if i in [3, 5, 6]:
1082
                         value = float(value)
1083
                     if i == 1:
1084
                          if value not in meterUnits: print("ESD: Unrecognized meter units",
     row[1]
1085
                     outputRow.append(value)
1086
                 output.append(outputRow)
                 outputRow = []
1087
1088
1089
             return output
1090
1091 def equest(p):
1092
         sim = SimFile(p)
1093
1094
         return {
1095
             'LV-B':LVB(sim),
1096
             'BEPS':BEPS(sim),
```

	-,	
1097		'ES-D':ESD(sim)
	}	
1090	}	

```
1 import openpyxl
 2.
 3 def leed2009(p,output_filepath):
 5
       wb = openpyxl.load workbook('templates/leed2009.xlsx')
 6
       ws = wb.active
 7
 8
       # ws['H55'] = 'text1'
 9
       # ws['H56'] = 'text2'
10
       # ws['H57'] = 'text3'
11
       # ws['H58'] = 'text4'
12
       # ws['H59'] = 'text5'
       ws['I49'] = 'Natural gas'
13
14
       ws['I50'] = 'Electric'
15
       ws['I53'] = 'Natural gas'
16
       # ws['I55'] = 'Natural gas'
17
       # ws['I56'] = 'Natural gas'
18
       # ws['I57'] = 'Natural gas'
19
       # ws['I58'] = 'Natural gas'
20
       # ws['I59'] = 'Natural gas'
21
22
       ws['J48'] = p.prop_area_lights_elec.get('mj')
23
       ws['J49'] = p.prop_space_heat_gas.get('mj')
24
       ws['J50'] = p.prop space cool elec.get('mj')
25
       ws['J51'] = p.prop_pumps_elec.get('mj')
26
       ws['J52'] = p.prop_vent_fans_elec.get('mj')
27
       ws['J53'] = p.prop_dhw_gas.get('mj')
28
       ws['J54'] = p.prop_plugs_elec.get('mj')
29
       \# ws['J55'] = 1008
30
       \# ws['J56'] = 1009
31
       \# ws['J57'] = 1010
32
       \# ws['J58'] = 1011
33
       \# ws['J59'] = 1012
34
35
       ws['I65'] = p.prop_elec_total.get('mj')
36
       ws['I66'] = p.prop_gas_total.get('mj')
37
       \# ws['I67'] = 1027
38
       ws['J65'] = p.prop_cost_elec
39
       ws['J66'] = p.prop_cost_gas
40
       \# ws['J67'] = 1030
41
42
       if p.reference:
43
           ws['M48'] = p.ref area lights elec.get('mj')
44
           ws['M49'] = p.ref_space_heat_gas.get('mj')
45
           ws['M50'] = p.ref space cool elec.get('mj')
46
           ws['M51'] = p.ref_pumps_elec.get('mj')
47
           ws['M52'] = p.ref_vent_fans_elec.get('mj')
48
           ws['M53'] = p.ref_dhw_gas.get('mj')
49
           ws['M54'] = p.ref_plugs_elec.get('mj')
           \# ws['M55'] = 1020
50
51
           \# ws['M56'] = 1021
           \# ws['M57'] = 1022
52
53
           \# ws['M58'] = 1023
54
           \# ws['M59'] = 1024
55
56
           ws['L65'] = p.ref_elec_total.get('mj')
```

File - leed2009.py

```
57
           ws['L66'] = p.ref_gas_total.get('mj')
58
           # ws['L67'] = 1033
           ws['M65'] = p.ref_cost_elec
59
60
           ws['M66'] = p.ref_cost_gas
61
           \# ws['M67'] = 1036
62
63
      wb.save(output_filepath)
64
65
66
```

```
1 import os, os.path, datetime, openpyxl
 2 import energyplus, ies, equest
 3 import tgs, obc, leed2009, sbd
 4 from units import Energy, Mass
 6 PWB = '4 setup.xlsx'
 7 PF = '1_projects'
 8 OF = '2_outputs'
 9
10
11 class Project:
12
       def __init__(self, projectName=None):
13
           self.projectName = projectName
           self.proposed = None
14
15
           self.reference = None
           self.projectAddress = None
16
17
           self.spaNumber = None
18
           self.architectName = None
19
           self.architectPhone = None
20
           self.architectEmail = None
21
           self.architectTitle = None
22
           self.architectCompany = None
23
           self.modellerName = None
24
           self.modellerPhone = None
25
           self.modellerEmail = None
26
           self.modellerTitle = None
27
           self.modellerCompany = None
28
           self.buildingType = None
29
           self.buildingArea = None
30
           self.codeCompliancePath = None
31
32
           self.prop_area_lights_elec = None
33
           self.prop_int_lights_elec = None
34
           self.prop_misc_elec = None
35
           self.prop_space_heat_elec = None
36
           self.prop_space_cool_elec = None
37
           self.prop_vent_fans_elec = None
38
           self.prop_dhw_elec = None
39
           self.prop_pumps_elec = None
40
           self.prop_plugs_elec = None
41
           self.prop area lights gas = None
42
           self.prop_int_lights_gas = None
43
           self.prop misc gas = None
44
           self.prop_space_heat_gas = None
45
           self.prop space cool gas = None
46
           self.prop_vent_fans_gas = None
47
           self.prop_dhw_gas = None
48
           self.prop_pumps_gas = None
49
           self.prop_plugs_gas = None
50
           self.prop_area_lights_total = None
51
           self.prop_int_lights_total = None
52
           self.prop_misc_total = None
53
           self.prop_space_heat_total = None
54
           self.prop_space_cool_total = None
55
           self.prop_vent_fans_total = None
56
           self.prop_dhw_total = None
```

```
57
            self.prop_pumps_total = None
 58
            self.prop_plugs_total = None
 59
            self.prop_elec_total = None
 60
            self.prop_gas_total = None
 61
            self.prop energy total = None
            self.prop carbon elec = None
 62
 63
            self.prop_carbon_gas = None
 64
            self.prop_carbon_total = None
 65
            self.prop_cost_elec = None
 66
            self.prop_cost_gas = None
 67
            self.prop_cost_total = None
 68
 69
 70
            self.ref_area_lights_elec = None
 71
            self.ref_int_lights_elec = None
 72
            self.ref misc elec = None
 73
            self.ref_space_heat_elec = None
 74
            self.ref_space_cool_elec = None
 75
            self.ref_vent_fans_elec = None
 76
            self.ref_dhw_elec = None
 77
            self.ref pumps elec = None
 78
            self.ref_plugs_elec = None
 79
            self.ref_area_lights_gas = None
 80
            self.ref int lights gas = None
 81
            self.ref_misc_gas = None
 82
            self.ref_space_heat_gas = None
 83
            self.ref_space_cool_gas = None
 84
            self.ref_vent_fans_gas = None
 85
            self.ref dhw gas = None
 86
            self.ref_pumps_gas = None
 87
            self.ref_plugs_gas = None
 88
            self.ref_area_lights_total = None
 89
            self.ref_int_lights_total = None
 90
            self.ref_misc_total = None
 91
            self.ref_space_heat_total = None
 92
            self.ref_space_cool_total = None
 93
            self.ref_vent_fans_total = None
 94
            self.ref_dhw_total = None
 95
            self.ref_pumps_total = None
 96
            self.ref plugs total = None
 97
            self.ref elec total = None
 98
            self.ref_gas_total = None
 99
            self.ref energy total = None
100
            self.ref_carbon_elec = None
101
            self.ref carbon gas = None
102
            self.ref carbon total = None
            self.ref_cost_elec = None
103
            self.ref cost gas = None
104
105
            self.ref_cost_total = None
106
107
        def addName(self,name):
108
            self.projectName = name
109
110
        def addProposed(self, modelPath):
111
            if modelPath:
112
                self.proposed = Model(modelPath)
```

```
113
114
                if self.proposed.type == 'IES':
115
                    iesParsed = ies.iesParse(self.proposed.filepath)
                    self.addReference(modelPath)
116
117
118
                    self.buildingArea = iesParsed['spaceSummary']['Totals']['total']
119
120
                    lights = [iesParsed['prmEnergy'][light] for light in ['Exterior Lighting',
    'Interior Lighting Process', 'Internal Lighting']]
121
                    self.prop_area_lights_elec = Energy(sum([light['proposed'].get() for light
     in lights if light['type'] == 'Electricity']))
122
                    self.prop_area_lights_gas = Energy(sum([light['proposed'].get() for light
    in lights if light['type'] == 'Gas']))
123
                    self.prop_area_lights_total = self.prop_area_lights_elec+self.
   prop_area_lights_gas
124
125
                    intLights = [iesParsed['prmEnergy'][light] for light in
126
                               ['Interior Lighting Process', 'Internal Lighting']]
127
                    self.prop_int_lights_elec = Energy(
128
                        sum([light['proposed'].get() for light in lights if light['type'] == '
    Electricity']))
129
                    self.prop_int_lights_gas = Energy(
130
                        sum([light['proposed'].get() for light in lights if light['type'] == '
    Gas']))
131
                    self.prop_int_lights_total = self.prop_int_lights_elec + self.
   prop_int_lights_gas
132
133
                    dhws = [iesParsed['prmEnergy'][dhw] for dhw in ['Service Water Heating (
    Fossil Fuel)', 'Service Water Heating']]
                    self.prop_dhw_elec = Energy(
134
                        sum([dhw['proposed'].get() for dhw in dhws if dhw['type'] == '
135
    Electricity']))
136
                    self.prop_dhw_gas = Energy(
137
                        sum([dhw['proposed'].get() for dhw in dhws if dhw['type'] == 'Gas']))
138
                    self.prop_dhw_total = self.prop_dhw_elec + self.prop_dhw_gas
139
140
                    coolings = [iesParsed['prmEnergy'][cooling] for cooling in ['Space Cooling
    ','Heat Rejection']]
141
                    self.prop_space_cool_elec = Energy(
142
                        sum([cooling['proposed'].get() for cooling in coolings if cooling['
    type'] == 'Electricity']))
143
                    self.prop_space_cool_gas = Energy(
                        sum([cooling['proposed'].get() for cooling in coolings if cooling['
144
    type'] == 'Gas']))
145
                    self.prop space cool total = self.prop space cool elec + self.
   prop_space_cool_gas
146
147
                    heatings = [iesParsed['prmEnergy'][heating] for heating in ['Space Heating
    ','Space Heating (Fossil Fuel)']]
148
                    self.prop_space_heat_elec = Energy(
149
                        sum([heating['proposed'].get() for heating in heatings if heating['
    type'] == 'Electricity']))
150
                    self.prop_space_heat_gas = Energy(
151
                        sum([heating['proposed'].get() for heating in heatings if heating['
    type'] == 'Gas']))
152
                    self.prop_space_heat_total = self.prop_space_heat_elec + self.
```

```
152 prop_space_heat_gas
153
154
                    miscs = [iesParsed['prmEnergy'][misc] for misc in ['Receptacle Equipment',
     'Refrigeration', 'Data Centre Equipment', 'Elevators Escalators']]
                    self.prop misc elec = Energy(
155
                        sum([misc['proposed'].get() for misc in miscs if misc['type'] == '
156
    Electricity']))
157
                    self.prop_misc_gas = Energy(
158
                        sum([misc['proposed'].get() for misc in miscs if misc['type'] == 'Gas'
    ]))
159
                    self.prop_misc_total = self.prop_misc_elec + self.prop_misc_gas
160
161
                    fans = [iesParsed['prmEnergy'][fan] for fan in ['Fans Interior', 'Fans
    Parking Garage']]
162
                    self.prop_vent_fans_elec = Energy(
163
                        sum([fan['proposed'].get() for fan in fans if fan['type'] == '
   Electricity']))
164
                    self.prop_vent_fans_gas = Energy(
165
                        sum([fan['proposed'].get() for fan in fans if fan['type'] == 'Gas']))
166
                    self.prop_vent_fans_total = self.prop_vent_fans_elec + self.
   prop_vent_fans_gas
167
168
                    self.prop_elec_total = iesParsed['economicsEnergy']['Electricity']['
   proposed']
169
                    self.prop_gas_total = iesParsed['economicsEnergy']['Gas']['proposed']
170
                    self.prop_energy_total = iesParsed['economicsEnergy']['Subtotal (Model
    Outputs): ']['proposed']
171
                    self.prop carbon elec = Mass(self.prop elec total.get('kwh')*50,'g')
172
173
                    self.prop_carbon_gas = Mass(self.prop_gas_total.get('kwh')*182,'g')
                    self.prop_carbon_total = self.prop_carbon_elec + self.prop_carbon_gas
174
175
                elif self.proposed.type == 'eQuest':
176
177
                    equestParsed = equest.equest(modelPath)
                    beps = equestParsed['BEPS']
178
179
                    esd = equestParsed['ES-D']
180
                    self.buildingArea = equestParsed['LV-B'].netArea
181
182
                    self.prop_area_lights_elec = beps.areaLightsElec + beps.taskLightsElec
183
                    self.prop_int_lights_elec = beps.areaLightsElec + beps.taskLightsElec
184
                    self.prop_misc_elec = beps.equipElec
185
                    self.prop_space_heat_elec = beps.spaceHeatElec
                    self.prop space cool elec = beps.spaceCoolElec + beps.heatRejectElec
186
187
                    self.prop_vent_fans_elec = beps.fansElec
188
                    self.prop dhw elec = beps.dhwElec
189
                    self.prop_pumps_elec = beps.pumpsElec
190
                    self.prop_plugs_elec = beps.equipElec
191
                    self.prop_area_lights_gas = beps.areaLightsGas + beps.taskLightsGas
192
                    self.prop_int_lights_gas = beps.areaLightsGas + beps.taskLightsGas
193
                    self.prop_misc_gas = beps.equipGas
194
                    self.prop_space_heat_gas = beps.spaceHeatGas
195
                    self.prop_space_cool_gas = beps.spaceCoolGas + beps.heatRejectGas
196
                    self.prop_vent_fans_gas = beps.fansGas
197
                    self.prop_dhw_gas = beps.dhwGas
198
                    self.prop_pumps_gas = beps.pumpsGas
199
                    self.prop_plugs_gas = beps.equipGas
```

```
200
                    self.prop_area_lights_total = self.prop_area_lights_elec + self.
    prop_area_lights_gas
201
                    self.prop_int_lights_total = self.prop_int_lights_elec + self.
    prop_int_lights_gas
                    self.prop_misc_total = self.prop_misc_elec + self.prop_misc_gas
202
203
                    self.prop_space_heat_total = self.prop_space_heat_elec + self.
    prop_space_heat_gas
204
                    self.prop_space_cool_total = self.prop_space_cool_elec + self.
    prop_space_cool_gas
205
                    self.prop_vent_fans_total = self.prop_vent_fans_elec + self.
    prop_vent_fans_gas
206
                    self.prop_dhw_total = self.prop_dhw_elec + self.prop_dhw_gas
207
                    self.prop_pumps_total = self.prop_pumps_elec + self.prop_pumps_gas
208
                    self.prop_plugs_total = self.prop_plugs_elec + self.prop_plugs_gas
209
                    self.prop_elec_total = beps.elecTotal
210
                    self.prop_gas_total = beps.gasTotal
211
                    self.prop_energy_total = self.prop_elec_total + self.prop_gas_total
212
                    self.prop_carbon_elec = Mass(self.prop_elec_total.get('kwh')*50,'g')
213
                    self.prop_carbon_gas = Mass(self.prop_elec_total.get('kwh')*50,'g')
214
                    self.prop_carbon_total = self.prop_carbon_elec + self.prop_carbon_gas
215
                    self.prop cost elec = esd.electricityCost
216
                    self.prop_cost_gas = esd.gasCost
217
                    self.prop_cost_total = esd.totalCost
218
219
                elif self.proposed.type == 'energyPlus':
220
                    pass
221
222
        def addReference(self, modelPath):
            if modelPath:
223
                self.reference = Model(modelPath)
224
225
226
                if self.reference.type == 'IES':
227
                    iesParsed = ies.iesParse(self.reference.filepath)
228
                    lights = [iesParsed['prmEnergy'][light] for light in ['Exterior Lighting',
229
    'Interior Lighting Process', 'Internal Lighting']]
230
                    self.ref_area_lights_elec = Energy(sum([light['reference'].get() for light
     in lights if light['type'] == 'Electricity']))
231
                    self.ref_area_lights_gas = Energy(sum([light['reference'].get() for light
    in lights if light['type'] == 'Gas']))
232
                    self.ref_area_lights_total = self.ref_area_lights_elec + self.
    ref_area_lights_gas
233
234
                    intLights = [iesParsed['prmEnergy'][light] for light in
235
                               ['Interior Lighting Process', 'Internal Lighting']]
236
                    self.ref_int_lights_elec = Energy(
237
                        sum([light['reference'].get() for light in lights if light['type'] ==
    'Electricity']))
238
                    self.ref_int_lights_gas = Energy(
239
                        sum([light['reference'].get() for light in lights if light['type'] ==
    'Gas']))
240
                    self.ref_int_lights_total = self.ref_int_lights_elec + self.
    ref_int_lights_gas
241
242
                    dhws = [iesParsed['prmEnergy'][dhw] for dhw in ['Service Water Heating (
    Fossil Fuel)','Service Water Heating']]
```

```
243
                    self.ref_dhw_elec = Energy(
                        sum([dhw['reference'].get() for dhw in dhws if dhw['type'] == '
244
    Electricity']))
                    self.ref dhw gas = Energy(
2.45
                        sum([dhw['reference'].get() for dhw in dhws if dhw['type'] == 'Gas']))
246
247
                    self.ref_dhw_total = self.ref_dhw_elec + self.ref_dhw_gas
248
249
                    coolings = [iesParsed['prmEnergy'][cooling] for cooling in ['Space Cooling
    ','Heat Rejection']]
250
                    self.ref_space_cool_elec = Energy(
251
                        sum([cooling['reference'].get() for cooling in coolings if cooling['
    type'] == 'Electricity']))
252
                    self.ref_space_cool_gas = Energy(
253
                        sum([cooling['reference'].get() for cooling in coolings if cooling['
    type'] == 'Gas']))
254
                    self.ref_space_cool_total = self.ref_space_cool_elec + self.
    ref_space_cool_gas
255
256
                    heatings = [iesParsed['prmEnergy'][heating] for heating in ['Space Heating
    ','Space Heating (Fossil Fuel)']]
257
                    self.ref space heat elec = Energy(
                        sum([heating['reference'].get() for heating in heatings if heating['
258
    type'] == 'Electricity']))
259
                    self.ref space heat gas = Energy(
                        sum([heating['reference'].get() for heating in heatings if heating['
260
    type'] == 'Gas']))
261
                    self.ref_space_heat_total = self.ref_space_heat_elec + self.
    ref_space_heat_gas
262
263
                    miscs = [iesParsed['prmEnergy'][misc] for misc in ['Receptacle Equipment',
     'Refrigeration', 'Data Centre Equipment', 'Elevators Escalators']]
264
                    self.ref_misc_elec = Energy(
                        sum([misc['reference'].get() for misc in miscs if misc['type'] == '
265
    Electricity']))
266
                    self.ref_misc_gas = Energy(
267
                        sum([misc['reference'].get() for misc in miscs if misc['type'] == 'Gas
    •]))
268
                    self.ref_misc_total = self.ref_misc_elec + self.ref_misc_gas
269
270
                    fans = [iesParsed['prmEnergy'][fan] for fan in ['Fans Interior', 'Fans
    Parking Garage']]
271
                    self.ref_vent_fans_elec = Energy(
                        sum([fan['reference'].get() for fan in fans if fan['type'] == '
    Electricity']))
273
                    self.ref vent fans gas = Energy(
274
                        sum([fan['reference'].get() for fan in fans if fan['type'] == 'Gas']))
                    self.ref_vent_fans_total = self.ref_vent_fans_elec + self.
    ref_vent_fans_gas
276
277
                    self.ref_elec_total = iesParsed['economicsEnergy']['Electricity']['
    reference']
                    self.ref_gas_total = iesParsed['economicsEnergy']['Gas']['reference']
278
                    self.ref_energy_total = iesParsed['economicsEnergy']['Subtotal (Model
279
    Outputs): ' ] [ 'reference' ]
280
281
                    self.ref_carbon_elec = Mass(self.ref_elec_total.get('kwh')*50,'g')
```

```
282
                    self.ref_carbon_gas = Mass(self.ref_gas_total.get('kwh')*182,'g')
283
                    self.ref_carbon_total = self.ref_carbon_elec + self.ref_carbon_gas
284
                elif self.reference.type == 'eQuest':
285
286
                    equestParsed = equest.equest(modelPath)
287
                    esd = equestParsed['ES-D']
288
                    beps = equestParsed['BEPS']
289
290
                    self.ref_area_lights_elec = beps.areaLightsElec + beps.taskLightsElec
291
                    self.ref_int_lights_elec = beps.areaLightsElec + beps.taskLightsElec
292
                    self.ref_misc_elec = beps.equipElec
293
                    self.ref_space_heat_elec = beps.spaceHeatElec
294
                    self.ref_space_cool_elec = beps.spaceCoolElec + beps.heatRejectElec
295
                    self.ref_vent_fans_elec = beps.fansElec
296
                    self.ref_dhw_elec = beps.dhwElec
297
                    self.ref_pumps_elec = beps.pumpsElec
298
                    self.ref_plugs_elec = beps.equipElec
299
                    self.ref_area_lights_gas = beps.areaLightsGas + beps.taskLightsGas
300
                    self.ref_int_lights_gas = beps.areaLightsGas + beps.taskLightsGas
301
                    self.ref_misc_gas = beps.equipGas
302
                    self.ref space heat gas = beps.spaceHeatGas
303
                    self.ref_space_cool_gas = beps.spaceCoolGas + beps.heatRejectGas
304
                    self.ref_vent_fans_gas = beps.fansGas
305
                    self.ref dhw gas = beps.dhwGas
306
                    self.ref_pumps_gas = beps.pumpsGas
307
                    self.ref_plugs_gas = beps.equipGas
308
                    self.ref_area_lights_total = self.ref_area_lights_elec + self.
    ref_area_lights_gas
                    self.ref_int_lights_total = self.ref_int_lights_elec + self.
309
    ref_int_lights_gas
310
                    self.ref_misc_total = self.ref_misc_elec + self.ref_misc_gas
                    self.ref_space_heat_total = self.ref_space_heat_elec + self.
311
   ref_space_heat_gas
                    self.ref_space_cool_total = self.ref_space_cool_elec + self.
312
    ref_space_cool_gas
                    self.ref_vent_fans_total = self.ref_vent_fans_elec + self.
313
   ref_vent_fans_gas
314
                    self.ref_dhw_total = self.ref_dhw_elec + self.ref_dhw_gas
315
                    self.ref_pumps_total = self.ref_pumps_elec + self.ref_pumps_gas
316
                    self.ref_plugs_total = self.ref_plugs_elec + self.ref_plugs_gas
317
                    self.ref elec total = beps.elecTotal
318
                    self.ref_gas_total = beps.gasTotal
319
                    self.ref energy total = self.ref elec total + self.ref gas total
320
                    self.ref_carbon_elec = Mass(self.ref_elec_total.get('kwh')*50,'g')
321
                    self.ref carbon gas = Mass(self.ref elec total.get('kwh')*50,'g')
322
                    self.ref_carbon_total = self.ref_carbon_elec + self.ref_carbon_gas
323
                    self.ref_cost_elec = esd.electricityCost
324
                    self.ref_cost_gas = esd.gasCost
325
                    self.ref_cost_total = esd.totalCost
326
327
                elif self.reference.type == 'energyPlus':
328
                    pass
329
330
        def addByPWB(self,pd):
            self.projectName = pd['Project Name']
331
332
            self.addProposed(os.path.join(PF,pd['Proposed File']))
```

```
333
            self.addReference(pd['Reference File'])
334
            self.projectAddress = pd['Project Address']
335
            self.spaNumber = pd['SPA Number']
336
            self.architectName = pd['Architect Name']
337
            self.architectPhone = pd['Architect Phone']
338
            self.architectEmail = pd['Architect Email']
339
            self.architectTitle = pd['Architect Title']
            self.architectCompany = pd['Architect Company']
340
341
            self.modellerName = pd['Energy Modeller Name']
            self.modellerPhone = pd['Energy Modeller Phone']
342
343
            self.modellerEmail = pd['Energy Modeller Email']
            self.modellerTitle = pd['Energy Modeller Title']
344
345
            self.modellerCompany = pd['Energy Modeller Company']
            self.buildingType = pd['Building Type']
346
347
            self.buildingArea = pd['Building Area']
348
            self.codeCompliancePath = pd['Code Compliance Path']
349
350
351 class Model:
352
        def __init__(self,filepath):
            self.filepath = filepath
353
354
            self.type = None
355
356
            if os.path.splitext(filepath)[1].lower() == '.sim':
357
                self.type = 'eQuest'
358
            elif ies.isIES(filepath):
359
                self.type = 'IES'
360
361 def readPWB(pwb):
362
363
        projects = []
364
365
        if not os.path.isfile(PWB):
366
            print('Project workbook: "' + PWB + '" not found')
367
            return projects
368
369
        wb = openpyxl.load_workbook(PWB)
370
        ws = wb.active
371
372
        pwbProjects = []
373
        pwbProjectValues = {}
374
375
376
        for i,column in enumerate(ws.columns):
            if i == 0:
377
378
                headings = []
379
                for row in column:
380
                    headings.append(row.value)
381
            else:
                for i2, row in enumerate(column):
382
                    pwbProjectValues[headings[i2]] = row.value
383
384
                pwbProjects.append(pwbProjectValues)
385
                pwbProjectValues = {}
386
387
        for entry in pwbProjects:
388
            project = Project()
```

```
389
            project.addByPWB(entry)
390
            projects.append(project)
391
392
        return projects
393
394 def scanPF(pf):
395
        fileNames = []
396
        projectNames = {}
397
        projects = []
398
399
        for entry in os.listdir(pf):
400
            filepath = os.path.join(pf,entry)
401
            if os.path.isfile(filepath):
402
                fileNames.append(entry)
403
404
        for fileName in fileNames:
405
            root = os.path.splitext(fileName)[0]
406
            if root.endswith('_prop'):
407
                withoutSuffix = root[:-5]
408
                if withoutSuffix not in projectNames.keys(): projectNames[withoutSuffix] = {}
                projectNames[withoutSuffix]['proposed'] = os.path.join(pf,fileName)
409
            elif root.endswith('_ref'):
410
411
                withoutSuffix = root[:-4]
412
                if withoutSuffix not in projectNames.keys(): projectNames[withoutSuffix] = {}
413
                projectNames[withoutSuffix]['reference'] = os.path.join(pf,fileName)
414
            else:
415
                withoutSuffix = root
416
                if withoutSuffix not in projectNames.keys(): projectNames[withoutSuffix] = {}
                projectNames[withoutSuffix]['untagged'] = os.path.join(pf,fileName)
417
418
        for project in projectNames.keys():
419
420
            if len(projectNames[project].keys()) == 3:
421
                print('3 files provided for the same project')
422
            else:
423
                newProject = Project()
424
                if 'proposed' in projectNames[project].keys():
425
                    newProject.addName(project)
426
                    newProject.addProposed(projectNames[project]['proposed'])
427
                    if 'reference' in projectNames[project].keys():
428
                         newProject.addReference(projectNames[project]['reference'])
429
                    elif 'untagged' in projectNames[project].keys():
430
                         newProject.addReference(projectNames[project]['untagged'])
431
432
                elif 'untagged' in projectNames[project].keys():
433
                    newProject.addName(project)
434
                    newProject.addProposed(projectNames[project]['untagged'])
435
                    if 'reference' in projectNames[project].keys():
436
                         newProject.addReference(projectNames[project]['reference'])
437
                else:
438
                    newProject.addName(project)
439
                    newProject.addProposed(projectNames[project]['reference'])
440
441
                projects.append(newProject)
442
443
        return projects
444
```

```
File - harvester.py
445
446 def joinPWBandPF(pwb,pf):
447
        return pwb+pf
448
449
450 def harvest():
451
        runTime = datetime.datetime.now().strftime('%Y%m%d %H%M%S')
452
        outFolderBase = os.path.join(OF,runTime)
453
454
        #open project setup workbook
455
        # projectsInPWB = readPWB(PWB)
456
        #scan project in project folder
457
        projectsInPF = scanPF(PF)
458
459
        #join project lists
460
        # projects = joinPWBandPF(projectsInPWB,projectsInPF)
461
        projects = projectsInPF
462
463
        # return projects
464
465
        # pass project details to output modules
466
467
        os.mkdir(outFolderBase)
468
        # projects = projects[9:15]
469
        # projects = projects[:2]
        for project in projects:
470
471
            print('Creating output for:', project.projectName)
472
            outFolder = os.path.join(outFolderBase,project.projectName)
473
            os.mkdir(outFolder)
474
            tgs.tgs(project,os.path.join(outFolder,'tgs.pdf'))
475
            obc.obc(project,os.path.join(outFolder,'obc.pdf'))
476
            sbd.sbd(project,os.path.join(outFolder,'sbd.xlsx'))
477
            leed2009.leed2009(project,os.path.join(outFolder,'leed2009.xlsx'))
478
479
        print('Output creation complete')
480
481
        return projects
482
483
484 if name == ' main ':
485
        projects = harvest()
486
        # projects = scanPF(PF)
487
        # test = equest.equest(projects[0].proposed.filepath)
488
```


APPENDIX D:

SAMPLE SUBMISSION REPORTS FROM TEST RUNS

LEED Canada for New Construction and Major Renovations 2009

Project Number:

EA Prerequisite 2: MINIMUM ENERGY PERFORMANCE & EA Credit 1: OPTIMIZE ENERGY PERFORMANCE

New Construction

Please select only ONE of the following options:
Whole Building Energy Simulation
OPTION 1. (PATH 1): Model National Energy Code For Buildings 1997 (MNECB)
OPTION 1. (PATH 2): ASHRAE 90.1-2007, Energy Standard for Buildings Except Low-Rise Residential Buildings
Prescriptive Compliance Path
OPTION 2. (PATH 1): ASHRAE Advanced Energy Design Guide for Small Office Buildings 2004 Less than 1,860 square metres (20,000 square feet) with office occupancy.
OPTION 2. (PATH 2): ASHRAE Advanced Energy Design Guide for Small Retail Buildings 2006 Less than 1,860 square metres (20,000 square feet) with retail occupancy.
OPTION 2. (PATH 3): ASHRAE Advanced Energy Design Guide for Small Warehouses and Self-Storage Buildings 2008 Less than 4,645 square metres (50,000 square feet) with warehouse or self-storage occupancy.
OPTION 2. (PATH 4): ASHRAE Advanced Energy Design Guide for K-12 School Buildings Less than 18,600 square metres (200,000 square feet) with K-12 school occupancy.
OPTION 3: Advanced Buildings™ Core Performance™ Guide Less than 9,290 square metres (100,000 square feet).
Special Circumstances or Alternative Compliance Path

OPTION 1: Whole Building Energy Simulation

(1 to 19 Points)

PATH

Complete the following tables to support the selected option:

Table: Energy Cost and Consumption by Energy Type

			Propo	sed Building	Referer	nce Building	Energy
Energy Sum	mary by End Use	Energy Type		Intensity		Intensity	Savings
			[MJ]	[kWh/m2]	[MJ]	[kWh/m2]	[%]
Lighting		Electric	678,401	-	944,697	-	28%
Space Heating		Natural gas	7,669,306	-	13,380,218	-	43%
Space Cooling		Electric	299,108	-	527,211	-	43%
Pumps		Electric	171,341	-	497,037	-	66%
Fans		Electric	2,253,599	-	2,714,764	-	17%
Service Water F	Heating	Natural gas	191,704	-	248,677	-	23%
Plug Loads		Electric	285,182	-	285,182	-	0%
Other:	Enter End Use	Select a fuel	0	-	0	-	0%
Other:	Enter End Use	Select a fuel	0	-	0	-	0%
Other:	Enter End Use	Select a fuel	0	-	0	-	0%
Other:	Enter End Use	Select a fuel	0	-	0	-	0%
Other:	Enter End Use	Select a fuel	0	-	0	-	0%
Subtotal			11,548,641	0.0	18,597,786	0.0	38%

		Propos	sed Building	Ref	erence Building	Perc	Percent Savings		
Total Energy Sumr	mary	Energy	Cost	Energ	y Cost	Energy	Cost		
		[MJ]	[\$]	[M.	J] [\$]	[%]	[%]		
Electricity		3,687,631	\$116,038	4,968,99	7 \$156,352	26%	26%		
Natural Gas		7,861,010	\$12,473	13,628,89	5 \$21,625	42%	42%		
Oil / Other Fuels		0	\$0		0 \$0	0%	0%		
Total		11,548,641	\$128,511	18,597,89	1 \$177,977	38%	28%		
Subtotal Energy C	Costs	11,548,641	\$128,511	(DEC')	\$177,974 (E	CB')			
Renewable	Select a fuel	0	\$0	(REC1)	Enter REC System	1	(REC')		
Energy Credit	Select a fuel	0	\$0	(REC2)	Enter REC System	2	\$0		
Net Total		11,548,641	\$128,511						

Percent Savings = 100 x (ECB' \$ - DEC' \$ + REC' \$)/ECB' \$ = 27% **Points Awarded**

Declare that:

The project complies with the mandatory provisions of MNECB 1997 / ASHRAE 90.1-2007.

Provide the following to support the selected option:								
Proof of the installation of an energy meter(s) that measures by the building owner, management organization or tenant.	all energy use, for both building and site energy uses, as well as pro	oof of calibration of any meters owned						
Provide ONE the following to support the selected option:								
	arty agency (such as Natural Resources Canada) and a modelling re y Modelling Rules (e.g., changes made for LEED compliance).	eport that details any changes						
OR	OR							
A compliance report from an acceptable independent third pa for MNECB 1997 / ASHRAE 90.1-2007 mandatory provisions	arty (individual on CaGBC's Experienced Modellers List), and signed s.	d compliance documentation						
OR								
	s, and signed compliance documentation for MNECB 1997 / ASHRA ed in the Guidance for Energy Modelling Compliance Documentation							
OPTION 2: Prescriptive Compliance Path		(1 Point)						
PATH								
Provide the following to support the selected option:								
Proof of the installation of an energy meter(s) that measures by the building owner, management organization or tenant.	all energy use, for both building and site energy uses, as well as pro	pof of calibration of any meters owned						
A compliance report from acceptable independent third party NOTE: Individuals on CaGBC's Experienced Modellers List of	(individual on CaGBC's Experienced Modellers List). qualify to conduct their own reports and do not require a third party re	eview.						
OPTION 3: Prescriptive Compliance Path: Advanced	Buildings™ Core Performance™ Guide	(1 to 3 Points)						
Declare that:								
Project complies with Section 1: Design Process Strategies.								
Project complies with Section 2: Core Performance Requirer	nents.							
Indicate the qualifying Section 3: Enhanced Performance strategi	ies that were implemented (1 point for every 3 strategies) :							
Daylighting and controls	Premium economizer performance							
Additional lighting power reductions	Variable speed control							
Plug loads, appliance efficiency	Demand-responsive buildings (peak power	r reduction)						
Supply air temperature reset (VAV)	On-site supply of renewable energy							
Indirect evaporative cooling	Fault detection and diagnostics							
Heat recovery								
Provide the following to support the selected option:								
Proof of the installation of an energy meter(s) that measures by the building owner, management organization or tenant.	all energy use, for both building and site energy uses, as well as pro	oof of calibration of any meters owned						
A compliance report from acceptable independent third party NOTE: Individuals on CaGBC's Experienced Modellers List of	(individual on CaGBC's Experienced Modellers List). qualify to conduct their own reports and do not require a third party re	eview.						
Special Circumstances or Alternative Compliance P	ath	**Select Option**						
Special circumstances preclude documentation of credit complia or the project team is using an alternative compliance path in lieu.								
Provide the following to support the selected option:								
	re compliance path and any supporting alternate documentation. and requirements are met and reference the alternate documentatio its.)	on provided.						
Credit Interpretation Request (CIR) applied to credit	:							
EA Prerequisite 2: Minimum Energy Performan	се	Prerequisite Documented						
OPTION 1: Whole Building Energy Simulation: OPTION 2: Prescriptive Compliance Path: OPTION 3: Prescriptive Compliance Path: Advanced Buildings™ Special Circumstances or Alternative Compliance Path	Core Performance™ Guide	NO NO NO NO						
EA Credit 1: Optimize Energy Performance		Points Documented						
OPTION 1: Whole Building Energy Simulation: (1 to 19 points)		0						
OPTION 2: Prescriptive Compliance Path: (1 point) OPTION 3: Prescriptive Compliance Path: Advanced Buildings™ Special Circumstances or Alternative Compliance Path **select of	0 0 0							

The signature below constitutes a declaration that the the submitted documents accurately represent the project.	project meets the credit intent and the requirements of the option selected above and that eject.
Name:	0
Organization:	0
Role in project:	Mechanical Engineer
Signature:	
Date:	

OBC SB-10 COMPLIA	ANCE (1) EX	CEED MNECB BY NOT LE	ESS THAN 5%		FORM		
	(2) EX	KCEED ASHRAE 90.1-201	O BY NOT LESS THA	N 5%			
Please select which of t							
		ME AT LEAST 35% LESS ENERGY (0	•		□ YES		
		NSUMPTION VALUES ARE DETERN	INED ACCORDING TO TH	E MODELLING			
PROCEDURES IDENTIFIED I							
		ME AT LEAST 17.5% LESS ENERGY NERGY CONSUMPTION VALUES A	•		□ YES		
		NERGY CONSOMPTION VALUES A APTER 11 OF ASHRAE 90.1-2010.	ARE DETERIVITNED ACCORD	DING TO THE			
WODELING I NOCEDONES	OOTEINED IN CIT	11 11 01 ASIMAL 30.1 2010.					
Project:		Modeller N	ame:				
		Annual Energy Summary (1)					
Occupancies	Floor Area	Annual Consumption Summary	Reference Building	Proposed	Units		
		,	Energy	Building Energy			
□ Assembly		Space Heating	3,716,727	2,130,363	kWh		
☐ Health/Institutional		Space Cooling	146,448	83,086	kWh		
□ Hotel/Motel		HVAC Auxiliary	754,101	626,000	kWh		
☐ Light Manufacturing		Misc. Electrical	79,217	79,217	kWh		
□ Multifamily		Service Hot Water	69,077	53,251	kWh		
□ Office		Interior Lighting	262,416	188,445	kWh		
□ Restaurant		Other	-		_		
□ Retail □ School		Other	<u> </u>				
□ School □ Warehouse		Total Annual Energy	5 400 004	0.007.050	IAM/b		
□ Warenouse □ Other		Total Annual Energy	5,166,081 >	3,207,956	kWh		
Other Total		Percentage less energy used					
Total		by proposed building:	37.9%				
		a, proposed admanig	011070				
☐ Proposed Building Descr	iption	Total Annual CO ₂ e Emissions	.138,028 >	102,434			
	<u> </u>	Percentage less CO₂e emissions by proposed building					
-			- VEC -				
		Peak Electric Demand					
		Building components specified			ivision 3 of SB-1		
		comply with the prescriptive re	equirements of ASHRAE 90	0.1-2010	□ YES		
		Reference Building Energy an	ud Dronocod Building Eno	ray Consumntion	as are calculate		
		by:	ia Proposea Ballallig Ellei	igy Consumption	is are carculate		
		Please specify modelling softv	vare:				
HVAC System Descriptions		Fnergy	Efficiency Features in Pro	pnosed Building	Design ⁽²⁾		
Reference Building Design		- 0/	,	.,,	0		
Decree and Decilation Decimal							
Proposed Building Design							
	oposed building o	lesign are modelled in accordanc	e with the requirements of	of the SB-10 and	the applicable		
ndard specified above		□ Yes					

Name/Title:

Notes: (1) A full modelling report is required to be submitted.

(2) Explain major energy saving features utilized to achieve modelled savings.

Signature:

ASHRAE 90.1-2010 & SB-10 ENERGY COST BUDGET (ECB) COMPLIANCE REPORT

FORM 11

Project:		Des	signer Na	ame:		
Occupancies FI	loor Area	Annual Consumption	on	Reference Building	Proposed	Units
•		Summary ⁽¹⁾		Energy	Building Energy	
□ Assembly		Space Heating		3,716,727	2,130,363	<u>kWh</u>
☐ Health/Institutional		Space Cooling		146,448	83,086	kWh
□ Hotel/Motel		HVAC Auxiliary		754,101	626,000	<u>kWh</u>
☐ Light Manufacturing		Misc. Electrical		79,217	79,217	kWh
□ Multifamily		Service Hot Water		69,077	53,251	kWh
□ Office		Interior Lighting		262,416	188,445	<u>kWh</u>
□ Restaurant		Other				
□ Retail						
□ School		Other				
□ Warehouse						
□ Other						
- Total		Total Annual Energy		5,166,081	3,207,956	kWh
<u></u>		Total Annual Energy (Cost	\$177,977	> \$128,511]
☐ Proposed Building Description	1			138,028	> 102,434	, kg
- 		Total Annual CO₂e Emiss	SIONS		, <u></u>	
		Peak Electric Demand			>	. □ YES or
		Building components	specifie	d in Sentence 1.1.2.	3.(2) of Chapter 1 of	Division 3 of SB-10
		comply with the preso				□ YES
		Reference Building En	nergy an	d Proposed Buildin	g Energy Consumption	ons are calculated
		Please specify modelli	ing softv	vare:		
			F	F.C		D : (2)
HVAC System Descriptions			Energy	Efficiency Features	in Proposed Building	g Design' '
Reference Building Design						
-						
-						
Proposed Building Design						
		-				
Building is in compliance with ma	andatory requ	uirements of sections	□ YES			
5.4, 6.4, 7.4, 8.4, 9.4, and 10.4	, 1					

Compliance Result

The design detailed in the above referenced plans complies with the mandatory requirements of the ASHRAE 90.1-2010 Standard and the additional requirements of Supplementary Standard SB-10. The calculated proposed building energy cost (design energy cost), CO_2 emissions and peak electric demand do-not exceed the calculated reference building energy cost (energy cost budget) CO_2 emissions and peak electric demand. Therefore, this design **DOES COMPLY** with the ASHRAE 90.1-2010 ECB compliance methodology and the additional requirements of Supplementary Standard SB-10.

The information submitted above is accurate to the best of my knowledge.

Signature: Nam	me/Title:
----------------	-----------

Notes: (1) Verify with building official whether full modelling report is required to be submitted.

(2) Explain major energy saving features utilized to achieve modelled savings.

Appendix-ABetter Buildings Partnership - New Construction **Energy Modeling Report Summary**

PROJECT I Project Addres	_	ON					Date (dd/mr Building Typ	_			04/0	7/2017		
SPA-Number:							Building Are	_			2,8	94 m²		
Energy Modell Energy Modell Energy Modell	er Telephone:						Architect Na Architect Te	elephone:						
Modelling Soft				eQuest			Code Comp	liance Path: _						
		Referen	ice Building				Propos	ed Building				Ener	gy Savings	
Energy End Use	Electrical Annual Consumption (kWh)	Natural Gas Annual Consumption (kWh)	Energy Use Intensity (kWh/m2.yr)	Peak Demand Summer (kW)	Peak Demand Winter	Electrical Annual Consumption (kWh)	Natural Gas Annual Consumption (kWh)	Energy Use Intensity (kWh/m2.yr)	Peak Demand Summer (kW)	Peak Demand Winter (kW)	Peak Demand Summer (kW)%	Peak Demand Winter (kW)%	Annual Consumption (kWh)	Energy Efficie Above Base Ca
Lights	262,416	0	90.69	(KVV)	(KVV)	188,445	0	65.13	(KVV)	(KVV)				
Misc. Equipment	79,217	0	27.38	1		79,217	0	27.38						
Space Heating	0	3,716,727	1,284.48			0	2,130,363	736.24						
Space Cooling	146,448	0	50.61			83,086	0	28.71						
Pumps	138,066	0	47.71]		47,595	0	16.45						
Fans	754,101	0	260.61]		626,000	0	216.34						
Service Hot Water	0	69,077	23.87			0	53,251	18.40						
Totals	1,380,277	3,785,804	1,785.37			1,024,342	2,183,614	1,108.65						
Energy Modele Title: Company:		rgy demand a	nd consump	tion are	properly		Architect Nam Title: Company:	,, ,	eport sub	omitted f	or the abo	ve project.		
Signature:							Signature:							

January 2014

Energy (ekWh/yr)	Area Lights	Misc. Equipment	Space Heat	Space Cool	Vent Fans	DHW
SB-10 Reference Building	262,416	79,217	3,716,727	146,448	754,101	69,077
SBD Building	188,445	79,217	2,130,363	83,086	626,000	53,251

Energy	Reference Building	Savings By Design Building	Cumulative Reduction		
Annual Consumption (ekWh/yr)	5,166,081	3,207,956	37.9%		
GHG Emissions (kg CO2eq)	138,028	102,434	25.8%		