ENERGY BENCHMARKING TOOL DEVELOPMENT

TAF NEW CONCEPT DEVELOPMENT PROGRAM
RWDI #1701187
September 12, 2017

SUBMITTED TO
Ian Klesmer
Grants Manager and Policy Advisor
iklesmer@taf.ca

Ekaterina Tzekova
Building Research Manager
etzekova@taf.ca

The Atmospheric Fund
75 Elizabeth Street
Toronto, Ontario, M5G 1P4
T: 416.392.0271
F: 416.338.0616

SUBMITTED BY
Ontario Association of Architects
111 Moatfield Drive
Toronto, Ontario, M3B 3L6

PREPARED BY
Chris Frankowski
Sustainability Consultant
chris.frankowski@rwdi.com

Mike Williams
Principal, Sustainability
mike.williams@rwdi.com

RWDI
400-901 King Street West
Toronto, Ontario, M5V 3H5
T: 519.823.1311 x2062
F: 519.823.1316
TABLE OF CONTENTS

EXECUTIVE SUMMARY ..1

1 **INTRODUCTION** ..2

1.1 Description of Project .. 2

2 **PROJECT ACTIVITIES** ...3

2.1 Program Requirement Analysis ...3

2.2 Tool Development ...4

2.3 Testing ..4

3 **PROJECT STATUS** ...5

3.1 Expanded Project Scope ..5

3.1.1 Opportunity: Successful IESO Conservation Fund Application ...5

3.1.2 Challenge: Forward-looking Tool Development ..6

3.2 Toronto Green Standard Harvesting and Analysis ..6

3.2.1 Challenge: City of Toronto Data Unavailable ..6

3.2.2 Opportunity: Municipal Beta Testing Partnership ...7

3.3 Unanticipated Hurdles ...7

3.3.1 Challenging Opportunity: Increased Number of Characteristics ..7

3.3.2 Challenge: Post-Processed Results ...8

3.3.3 Challenge: IES-VE Output File Formats ...8

4 **NEXT STEPS** ..9

5 **FINANCIAL REPORT** ..9

5.1 External Funding Secured ..9

5.2 Discussion of Any Budget Variances ...9

6 **CARBON EMISSION REDUCTIONS** ..10

7 **FINAL REPORT QUESTIONNAIRE NARRATIVE** ..11

APPENDICES ...14
EXECUTIVE SUMMARY

The following report and appendices demonstrate the development of an automated data harvesting tool that extracts over 400 building characteristics from an eQUEST or IES-VE energy model output file, stores the data in a centralized database, and returns completed submission forms for five building programs and standards. Development is ongoing to expand this tool to include EnergyPlus energy model output files, and a sixth building program.

Two specific outcomes of this project are of immediate benefit to the building industry:

1. A robust matrix that identifies the over 400 key building characteristics needed to complete the required submission forms for six existing programs and standards (LEED, HPNC, TGS, OBC SB-10, SBD, and 2030 Challenge), and correlates these characteristics to the location of each data point within the output files of three prominent energy modelling software (eQUEST, EnergyPlus, and IES-VE). While the information in this matrix can be used to inform the manual extraction of data from an energy model file, the vast quantity of characteristics proves the need for an automated data extraction process.

2. This concept development project is a valuable part of a larger project, which includes the development of an end-user interface, online portal, and data storage architecture, to form an Energy Benchmarking Tool that is freely and easily accessed by the entire design community in Ontario. To accomplish this, additional funding has been secured through the Independent Electricity System Operator (IESO). The project work that has been completed using funding from TAF was instrumental as a proof-of-concept, and allowed for greater clarity in the scope and intention of the overall project, resulting in a successful application to the IESO Conservation Fund.

Despite these successes, there have been some challenges that limited the final delivery of this project.

1. The Toronto Green Standard (TGS) energy model files were not available for the completion of Task Areas 3 and 4, testing and analysis of the tool on external energy model files. Negotiations are ongoing to coordinate the completion of these tasks, but this will fall within the broader project, and will not be completed using funding from TAF.

2. The number of data points extracted from each building energy model expanded from 210 in the original proposal to over 400 in the full matrix. The inclusion of these characteristics has doubled the number of data points that are extracted from each energy model, which doubled the effort required for the project. RWDI was therefore not able to complete the full scope of script development within the funding time frame. The remaining scripting will be completed as part of the larger project, under the IESO funding described above.
1 INTRODUCTION

This report provides a final update of the New Construction Energy Benchmarking Tool Development project, in accordance with the terms and conditions outlined in the agreement “RE: GRANT #G-DEC 2016-1 - New Construction Energy Benchmarking Tool Development.” It is submitted to The Atmospheric Fund by the Ontario Association of Architects. For the technical development of the tool, the OAA has contracted RWDI engineers, one of the leading research engineering firms in Canada. This report has been prepared by RWDI.

1.1 Description of Project

In the current marketplace, regulations, voluntary standards and regulated incentive programs have been put in place to motivate newly constructed buildings to reduce their energy use and carbon footprint. Largely as a result of these programs, energy modelling has become a mainstream design exercise that is now completed on hundreds of projects annually in Ontario. To date, however, data contained within energy simulation files has not been leveraged either for broad analysis of performance trends or to benchmark like-buildings to improve energy performance.

Through the development of an Energy Benchmarking Tool, this project aims to automate the harvesting of information from completed energy models, and process the data in two ways to inform the building design industry in Ontario:

1. Completed program submission forms for six building standards and programs provided to the user; and
2. A data visualization platform available to the user to enable benchmarking of their building against the aggregated database of all harvested information.

Table 1 summarizes the six standards and programs that are included in the Energy Benchmarking Tool.

The target market for the project is new construction design decision makers in Ontario including architects, engineers, builders, and municipal building authorities. The standardized program submission forms provided by the Tool will result in streamlined and consistent reporting, which will be of benefit to both the design community and the reporting agencies. The aggregated data set generated through this reporting will be a valuable benchmarking tool to inform the design processes through comparison of energy and emission characteristics to other projects and best practice targets. Further, it may be and a way for program administrators to track and analyze performance trends across all new buildings.

Three energy modelling applications have been identified as priorities for this project, based on their prevalence in the market: eQUEST, EnergyPlus, and Integrated Environmental Solutions – Virtual Environment (IES-VE).
Table 1: Summary of Standards and Programs

<table>
<thead>
<tr>
<th>Standard / Program</th>
<th>Compatible Version(s)</th>
<th>Submission Form(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leadership in Energy and Environmental Design (LEED)</td>
<td>LEED v2009; LEED v4;</td>
<td>LEED Letter Template (v2009); LEED v4 online submission form;</td>
</tr>
<tr>
<td>Save On Energy - High Performance New Construction (HPNC)</td>
<td>HPNC Version 6.0, May 2016;</td>
<td>Energy and Demand Summary – May 18, 2016; Program Custom Project Worksheet – May 18, 2016;</td>
</tr>
<tr>
<td>Ontario Building Code (OBC)</td>
<td>Supplementary Bulletin 10-2012; *Submission forms for SB10-2017 have not been released however it will be included once available;</td>
<td>SB-10 Form A; SB-10 Form 11;</td>
</tr>
<tr>
<td>Savings by Design (SBD)</td>
<td>N/A</td>
<td>RWDI customized template (no official modelling submission form);</td>
</tr>
<tr>
<td>2030 Challenge</td>
<td>The 2030 Challenge 2015;</td>
<td>N/A</td>
</tr>
</tbody>
</table>

2 PROJECT ACTIVITIES

2.1 Program Requirement Analysis

The first task of this project was to prepare a concise and comprehensive summary of the reporting requirements for LEED, TGS, HPNC, OBC, SBD and 2030 Challenge into a single matrix. Through this process, 300 building and energy characteristics were identified for extraction from each energy model, to enable completion of the submission forms for each standard/program. An additional 100 characteristics were selected for inclusion as useful metrics for the benchmarking process. These characteristics were selected based on RWDI’s industry experience and the recommendation of the TAF staff. The Program Requirements Matrix was submitted for review by the OAA in March, 2017.

Having identified the program requirements and building characteristics for extraction, the next task involved locating each characteristic in the output files of all three selected energy modelling applications. The full matrix of over 400 building characteristics with identified energy modelling output locations can be found in Appendix A.
2.2 Tool Development

A Use Case Diagram and System Flowchart were developed to outline the structure of the tool. These can be found in Appendix B. From this outline, and using the information detailed in the Program Requirements Matrix described in Section 2.1, the Energy Benchmarking Tool was developed using the Python programming language.

The tool consists of a library of modules that are capable of extracting information from the output files of three different energy modelling applications and using that information to populate the submission forms for six different building programs. There is an extraction module for each of the three energy modelling application output files covered in the scope of this project. The extraction modules go through the modelling output files, extract the required information, and return it to the main module. There is also a populating module for each of the program submission documents that can be generated by the tool. The populating modules take the information passed to them by the main module, and create the required output files by inserting the data into template documents. The main module scans the project folder for the modelling output files, reads additional information out of the setup workbook, and calls the extraction and output modules.

The extraction modules were created by reviewing multiple output files from each energy modelling application and reverse engineering the output file format. By understanding the output file format fully, a reader can be created that is capable of interpreting any output from the energy modelling application.

The populating modules were developed using the submission documents that are provided by the programs as templates that can be populated by the modules.

The main module contains the logic for scanning the project folder for modelling output files, reading the project setup workbook, and calling the extraction and populating modules.

The tool was developed and tested on Python 3.5.1. The project utilizes several packages beyond those included in the Python standard library. Beautifulsoup4 is used for html file scraping, openpyxl is used for reading and writing excel files, and fdfgen is used for creating Acrobat Forms Data Format files. The tool also requires pdftk to be installed on the system for creating PDF files.

A copy of the current program source code is found in Appendix C.

2.3 Testing

The tool was developed and tested using multiple example modelling output files to which RWDI had access, for each modelling application. The modules were written in an iterative fashion by adding the logic for extracting the next data point, running the module against the test output files, and confirming that the data was extracted correctly for all test output files. The scripts were developed by reverse engineering the output files, so having a more diverse set of output files to test against improve the robustness of the extraction scripts.

Unfortunately, we were unable to access the City of Toronto modelling files (see Section 3.2.1 for more details), and as a result have not been able to test the tool against external files. As the development of the tool continues, the modules will continue to be tested against a larger and more diverse set of modelling output files.
3 PROJECT STATUS

Through the project activities described in Section 2, the project has progressed as follows:

1. Over 400 building characteristics have been identified as required for six programs and standards, and the location of these characteristics has been identified in three energy modelling software.

2. A library of modules has been developed, using Python programming language, to extract information from the output files of eQUEST and IES-VE energy modelling applications.
 a. Note: extraction of all 400 building characteristics from IES-VE output files was not possible, and is discussed further in Section 3.3.3.

3. Additional Python modules have been developed to populate the submission forms for four programs and standards.

4. The modules were tested using sample eQUEST and IES-VE energy modelling files in an iterative fashion to confirm that data extraction and submission form generation were completed as designed. The items highlighted in yellow in Appendix A are still under development.

Appendix D contains example program submission forms that were created by the tool from an example energy modelling output file. The outputs cover 4 of the 5 program submission forms included in the proposal (LEED, TGS, OBC, and SBD).

There is no program submission form for the 2030 Challenge. At this time, the relevant outputs are extracted into the database of building characteristics, but are not presented in an output file. With the full development of the tool, through the IESO funded project, a user input that identifies the use-type of the building will enable a comparison with the specific 2030 Challenge target for that building type. At that time, a reporting strategy will be developed to present the 2030 Challenge results.

The development of the EnergyPlus extraction module, and the HPNC populating module are still in progress. Improvements to all of the modules will continue as the tool is further developed, as is discussed in the following sections, which identify the challenges and opportunities encountered by the project and the program modifications that have been undertaken. These ongoing improvements will be completed as part of the IESO Conservation Funding project. A full list of the next steps that will be completed using the IESO funding is found in Section 4.

3.1 Expanded Project Scope

3.1.1 Opportunity: Successful IESO Conservation Fund Application

Parallel to the work that has been done for this Energy Benchmarking Tool Development project, RWDI has partnered with the OAA and the Toronto 2030 District to apply to the Independent Electricity Systems Operator (IESO) Conservation Fund. The IESO application proposed an expansion of this current project to include a robust
online user interface, beta-testing with industry partners from the design and regulatory sectors, and 2-years of user engagement to support the market launch of the Benchmarking Tool.

The application was successful, and the project has been awarded its full funding request. This is an excellent opportunity to build upon the groundwork that has been completed in this current TAF project, and move the Energy Benchmarking Tool from the concept development stage into full market deployment. It is believed that the TAF project strongly contributed to the success of the IESO application by demonstrating the demand for a benchmarking tool in the current market.

3.1.2 Challenge: Forward-looking Tool Development

The successful receipt of IESO Conservation Fund funding means that the larger initiative, of which the current project is the first step, is moving forward. This has altered the approach taken on the tasks and deliverables for the TAF funding, in reflection of the expanded overall scope. Specifically, the scope and function of the data extraction scripts has been expanded to accommodate the future project development, in order to avoid rewriting code in the future.

As a result, the scripts are more robust than initially planned, however this added detail is reflected in the increased effort spent in their development beyond the proposed TAF funding budget. Further, it has proven to be a challenge to complete the additional work within the timeframe of the TAF project.

3.2 Toronto Green Standard Harvesting and Analysis

3.2.1 Challenge: City of Toronto Data Unavailable

The TAF Funding Agreement included as a deliverable the results from a test run of the Energy Benchmarking Tool using energy model files submitted to the City of Toronto for application to the Toronto Green Standard. To facilitate this, RWDI met with representatives from the City to discuss the use of their modelling files. Unfortunately, due to confidentiality concerns, the City officials were unwilling to provide files, preventing RWDI from producing this deliverable.

In order to address the confidentiality concerns, an alternative was proposed where RWDI would produce a standalone version of the tool that could be installed and tested on-site at the City of Toronto Energy Efficiency Office, by City employees. Negotiations are underway to coordinate the completion of this collaborative testing. As such, this deliverable cannot currently be produced, however it is anticipated that this test run will be successfully completed once the arrangements are finalized and the stand alone version is produced by RWDI.
3.2.2 Opportunity: Municipal Beta Testing Partnership

Automated reporting to the most prominent new construction energy conservation programs in Ontario is a key function of our tool. Beyond providing a service to design professionals, this has been identified as an excellent opportunity to provide additional value to energy conservation program regulators. While all of the targeted standards and programs share a common objective of energy conservation, their varied reporting and compliance requirements have created confusion and detracted from their underlying intent. Developing a single reporting platform for all of these programs will simplify the process for applicants and the program’s governing bodies alike.

Our belief is that by aligning the Energy Benchmarking Tool with all of these programs, the use of our tool will be seen as a means to simplify and streamline the required program reporting and therefore use of the tool will be adopted rapidly and broadly by the design and program regulation communities. Despite not connecting for the TGS data harvesting and analysis, we are hopeful that the City of Toronto will participate in the development of the full Energy Benchmarking Tool as beta testers, and that the use of this tool will be beneficial to their offices. Working with the City of Toronto as beta testers will also allow the early resolution of their confidentiality concerns within the full tool.

3.3 Unanticipated Hurdles

3.3.1 Challenging Opportunity: Increased Number of Characteristics

The TAF funding proposal estimated that 210 data points would be extracted from each energy model to complete the Energy Benchmarking Tool objectives, based on a working beta version of the tool. During the Program Requirements Assessment task of this project, two expansions were made to the project scope:

1. The 2030 Challenge was added as a sixth program/standard for consideration; and
2. It was decided that tool would be compatible with both LEED 2009 and LEED v4 submission requirements and forms.

This meant that the original proposal greatly underestimated the number of characteristics that would be required to complete the submission forms for all six programs and standards. An additional 190 data points were identified for inclusion in the extraction process, for a total of over 400 building characteristics per energy model – double what was anticipated during the TAF funding application process.

The additional data points greatly increased the effort required for this project, both in the program requirement analysis tasks and in the tool development: for each additional characteristic, a feature needs to be added to each of the three data extraction scripts – one for each modelling software. Additional script development is also needed to process the data into the new program submission forms.
Despite this increased effort, the expanded number of building characteristics included in the extraction process enables the Energy Benchmarking Tool to be a more thorough and overall useful tool.

3.3.2 Challenge: Post-Processed Results

The process of energy modelling, and the limitations of current energy modelling software, frequently require the energy modeller to use software features in unintended ways in order to achieve a desired outcome. This process creates the necessity for manual post-processing by the energy modeller in order to convert the model results into what they are meant to represent.

The Energy Benchmarking Tool is incapable of identifying when this situation arises, and instead interprets the model files literally. Therefore, the results presented through this tool will, at times, not agree with an energy modelling report, or other post-processed interpretation of the results. This is an unavoidable challenge of the automated data extraction process, yet the intention of this project has never been to replace the experience of the design team. Rather, the Energy Benchmarking Tool is designed to provide an opportunity for the team to verify and review their design choices in the context of other similar buildings, and to relieve the time required for submission to building programs and standards. It is the responsibility of the energy modeller to review the model outputs that are extracted by the tool and make any necessary modifications.

3.3.3 Challenge: IES-VE Output File Formats

IES-VE is a proprietary energy simulation software. A summary report is produced when each model is run, but the detailed simulation results are only accessible through the IES-VE user interface. While many energy performance characteristics are provided in the summary report, several building characteristics, such as the seasonal efficiency of mechanical equipment, are not included and can only be determined through manual review of the model results. This has presented a challenge for the automated extraction of data from the model outputs.

RWDI has reached out to IES in an attempt to solve this data extraction issue but has received limited response. We hope that as this project expands under the IESO Conservation Funding, our partnerships with municipal authorities, modelling associations, and industry leaders will help demonstrate to IES the demand for the collaborative creation of an output format for IES-VE that aligns with the Energy Benchmarking Tool. In the meantime, the Energy Benchmarking Tool will extract as much information as possible from the current IES-VE summary report – the information that can be extracted from current summary report is sufficient for the completion of the program submission forms, but not all 400 data points can be extracted to the database. Appendix A identifies which characteristics have been successfully captured by the current scripting.
4 NEXT STEPS

Building upon the foundational work that was accomplished during this concept development project, the next steps for the Energy Benchmarking Tool Development project, which will be completed using the IESO Conservation Funding, can be summarized as follows:

1. Complete the development of the tool, including finalizing the automated data extraction scripts and preliminary output reports, designing a user interface, and developing data security and stewardship protocols;
 a. This will include development and testing of the scripting modules that were not completed during this concept development stage, e.g.: extraction from EnergyPlus, output submission form for HPNC, and development of a reporting strategy for the 2030 Challenge based on user inputs.
2. Initial industry engagement through beta testing and tool technical refinement;
3. 24-month full rollout to industry, including province-wide education and engagement sessions; and
4. Ongoing technical refinement and support for any updates to the standards/programs or software.
 a. In order to maintain the relevance of the Energy Benchmarking Tool for users, the standards and programs that are included will be reviewed regularly, and scripting will be developed or modified as required to accommodate changes or updates.

5 FINANCIAL REPORT

5.1 External Funding Secured

The funding provided by TAF has proven beneficial in leveraging external funding from the IESO Conservation Fund, as described in Section 3.1.1. The additional funding that has been secured will enable the expansion of this project into a larger project, which includes the development of an end-user interface, online portal, data storage architecture, and end-user agreements, to make the Energy Benchmarking Tool accessible to the building design and construction industry, and the building regulatory community across Ontario.

5.2 Discussion of Any Budget Variances

As discussed in detail in Section 3 of this report, a number of challenges and opportunities have impacted the outcome of this project.

1. The successful receipt of funding from the IESO Conservation Fund, and the corresponding expansion of the overall project has altered the approach taken for the scripting of the Energy Benchmarking Tool. The scripts are being written with this expansion in mind, to avoid future adjustments and re-programming. This added flexibility has taken greater time than was anticipated by the original TAF funding application.
2. The Toronto Green Standard (TGS) energy model files were not available for the completion of Task Areas 3 and 4. Negotiations are ongoing to coordinate the completion of these tasks, but this will fall within the broader project, and will not be completed using funding from TAF.

3. Beyond the 210 building characteristics that were extracted in the beta version of the tool, as described in the grant proposal, an additional 190 characteristics have been included in the Energy Benchmarking Tool as required for program submission forms, or as useful metrics for the benchmarking process. These characteristics were selected based on RWDI's industry experience and the recommendation of the TAF staff, however their inclusion has doubled the number of data points that are extracted from each energy model, which therefore greatly increased the effort required for the project.

6 CARBON EMISSION REDUCTIONS

The purpose of this project is to develop a benchmarking process for new construction energy models. In contrast to the application of a specific energy conservation measure it is difficult to quantifiably estimate the benefits of a benchmarking program. However, we know that when benchmarked metrics are introduced and managed it often leads to improvement—"you can't manage what you don't measure". To provide an estimated potential benefit of our project we will look to the well-established benefits of benchmarking in the existing building sector.

In Toronto, Civic Action's Race to Reduce achieved a 12% energy reduction over four years of benchmarking. While this was only one building type (office) and participants were self-selected, which likely skews performance higher, the results are nonetheless impressive. To be more conservative, we look to New York City and San Francisco who have had mandatory energy reporting of existing building energy use through EnergyStar Portfolio Manager in place for 3 and 4 years, respectively. Over this time period the cities have reported near 6% and 8% energy reductions in their existing building stock as a result of the implementation of their benchmarking programs. We believe that this Energy Benchmarking Tool could see a similar benefit, i.e. a 7% reduction in energy consumption, in the performance of new construction buildings.

To estimate the absolute potential of the project requires a forecast of anticipated new construction activity in Ontario. Obtaining the data necessary to prepare this estimate proved challenging; however, the following provides our best effort estimate.

We were able to obtain TOCore data, which estimates that there are currently 76,687 residential units in the development pipeline, all of which could potentially be impacted by our tool. Assuming an average unit size of 70 m² and a gross-up ratio of 1.2 the total residential area in the pipeline equates to a gross floor area of 6,441,708 m². To estimate our Project's potential impact on the commercial building sector we used historic TOCore data, which estimates commercial development at 950,000 m² since 2011 and have assumed that a similar gross floor area of commercial development is also in the pipeline. To annualize these estimates, we divided the total GFA estimates by 5 years, which equates to estimates of 1,200,000 and 190,000 m²/yr of residential and commercial development in Toronto's core, respectively.
To scale these estimates up to represent total City of Toronto and Province of Ontario estimates we have assumed that development in Toronto's core represents 40% of development in the City and that development in Toronto represents 20% of all development in the Province. This scales the total residential and commercial development in Ontario to 16,000,000 and 2,400,000 m²/yr, respectively.

Recent work completed for the City of Toronto in preparation for TGS v3 estimated the energy use and GHG intensity of residential and commercial buildings, which meet the minimum performance requirements of the OBC to be 225 and 233 kWh/m²/yr, and 0.035 tonnes/m² and 0.037 tonnes/m², respectively. For the purposes of this analysis we will assume an average for both residential and commercial buildings of 230 kWh/m²/yr and 0.036 tonnes CO₂e/m².

Based on the above assumptions we estimate our Project’s province-wide annual potential as follows:

Energy Savings: 296,000,000 kWh/yr
 = [7% reduction in energy consumption] x [16,000,000 m²/yr + 2,400,000 m²/yr] x [230 kWh/m²/yr]

GHG Emissions: 46,368 tonnes of CO₂e/yr
 = [7% reduction in energy consumption] x [16,000,000 m²/yr + 2,400,000 m²/yr] x [0.036 tonnes/m²]

We believe these estimates to be conservative given that our project will target not only the residential and commercial sectors, but any building required to prepare an energy model, which would add savings realized by institutional and industrial developments to the potential benefit of this Project.

7 FINAL REPORT QUESTIONNAIRE NARRATIVE

Schedule C – Final Report Questionnaire

1. Did you carry out the project as planned? If not, what changed and why? Did anything happen that you did not anticipate? If you had to do it all over again, what would you do differently? Describe the single most positive and negative aspects of the project.

The project was not carried out precisely as planned due to a number of challenges and opportunities that arose during the project, as detailed in Section 3. In hindsight, the time and effort required to complete each of the deliverables was underestimated by the original funding proposal. Anticipating this and either reducing the overall project scope or expanding the project budget (in terms of time and funding) would allow for a more smoothly delivered project.

The most positive aspect of this project has been the enthusiastic response it has generated from the wider building industry and community. At RWDI, we have been striving towards the expanded use of aggregated data to inform new construction design through benchmarking of performance trends, and have found that our clients
are very interested in learning from this analysis. In hearing that we are developing a tool to facilitate this process, several clients and collaborators have signed up to be volunteer beta testers.

A negative aspect of this project has been the challenge to extract data from a proprietary software, IES-VE, as described in Section 3.3.3. We have reached out to IES for support and in an attempt to develop a collaborative relationship, but at this time no such relationship has been established. As a result, we have had to reduce the scope of our data extraction when IES-VE is the energy modelling software used. We are hopeful that as the Energy Benchmarking Tool gains traction in the industry, the developers of IES-VE will be encouraged to collaborate with us.

2. What results have you accomplished? How do you measure success and how have your contributions led to specific measurable results? How do the results of your work compare with the objectives identified in the proposal? What other progress have you made in achieving your goals?

At this time, 400 building characteristics have been identified from six programs and standards relevant in the Ontario building context, and each has been correlated with its specific data output location in three leading energy modelling software. Functioning Python modules have been written for two of these three energy modelling applications (eQUEST and IES-VE), and the development of the module for EnergyPlus is in progress.

This does not fully achieve the results and objectives that were outlined in the proposal, which include full tool development for all three applications, and testing of 25 energy models provided by the City of Toronto. Full discussion of the missed objectives can be found in Section 3 of this report.

Despite these shortcomings, the project has successfully achieved its goal of receiving funding from the IESO through its Conservation Fund. The additional budget will be used to expand the Energy Benchmarking Tool to its full intended scope, facilitate a beta testing phase with industry volunteers, and introduce the final tool to the building industry using educational programming and ongoing technical support.

3. What have you learned from your project? What were the critical elements of your success? How will you apply your lessons? Lessons learned may relate to collaboration strategies, communications, policy, scientific matters or other interesting insights gained from your work.

The funding provided by TAF allowed RWDI to research the outputs generated by the energy modelling applications, the similarities and differences between these outputs, and how they can be utilized beyond the modelling process itself. The lessons learned during this initial phase of the project will be carried forward into the further development of the tool as part of the IESO funding that has been received.

4. How has your project contributed to the greater city-wide/provincial/national campaigns or strategies for climate change and/or air pollution in Canada? What will happen as a result of the project in the next five years or beyond?

Buildings are responsible for a significant portion of greenhouse gas emissions at the federal, provincial, and municipal levels – approximately 40%. This statistic has brought energy efficient and environmentally responsible building design forward as a focus of climate change action plans and strategies at all levels, as authorities recognize the potential for greenhouse gas emission reductions in the building industry. The Energy
Benchmarking Tool holds the potential to positively impact the building industry by reducing energy consumption in new construction buildings through benchmarking and energy conservation measures.

5. **How did your collaboration efforts contribute to the project? Describe your collaboration activities with a comment on how you measured impact and what results can be traced back specifically to your collaboration efforts? What challenges did you face with your collaborations?**

This positive attention that the TAF funding has brought to this Energy Benchmarking Tool project has been instrumental in strengthening the collaborative opportunities at the core of the project. Through this project, relationships have been fostered between RWDI and the Ontario Association of Architects, the Toronto 2030 District, the IESO, the Canadian chapter of the International Building Performance Simulation Association, and 10 volunteer beta testing firms and organizations.

A major collaboration effort in this project was the attempted collaboration with the City of Toronto, which had the goal of using Toronto Green Standard energy model submissions to test the reliability and robustness of the Energy Benchmarking Tool. This collaboration faced a major challenge in the confidentiality concerns of the City, which led to their unwillingness to participate. As a result, two of the deliverables of this project, which were tied to this collaboration, were unable to be achieved. Nevertheless, there are ongoing negotiations underway with the City of Toronto to determine how a future partnership could be established. By accommodating the privacy concerns of the City, the Energy Benchmarking Tool will be stronger, overall, and more easily adopted by similar municipal or regulatory bodies. Please refer to Section 3.2 of this report for more discussion.
6. **How did you find your experience working with the The Atmospheric Fund? Please provide feedback on positive aspects and areas where the relationship could be improved.**

The experience of working with TAF has been overall a positive one. Each deliverable has been well-received by the TAF team, and constructive feedback has been offered to improve the overall project. The enthusiasm with which TAF adopted this concept development project has driven our ability to promote the full Energy Benchmarking Tool project, and was instrumental in the success of the IESO Conservation Fund application.

7. **We encourage you to provide interesting high resolution photos and images (no more than three), or internet links related to your project. For those that are publishable, please include permission for us to use them in our publications and include credit details.**

N/A

APPENDICES

Appendix A – Full Matrix w/ status within tool

Appendix B – Use Case Diagram and System Flowchart

Appendix C – Source Code

Appendix D – Sample Submission Reports from Test Runs
APPENDIX A:
FULL MATRIX
<table>
<thead>
<tr>
<th>Field Label</th>
<th>Field Description</th>
<th>Manual entry</th>
<th>eQuest DOE-2</th>
<th>IES</th>
<th>EnergyPlus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output-0000</td>
<td>Project Name</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0001</td>
<td>Anonymous Name</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0002</td>
<td>Energy Model Status</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0003</td>
<td>Design Phase</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0004</td>
<td>Objective</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0005</td>
<td>Completion Year</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0006</td>
<td>Tender Year</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0007</td>
<td>SPA-Number</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0008</td>
<td>Energy Modeller Name</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0009</td>
<td>Architect Name</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0010</td>
<td>Code compliance path</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0011</td>
<td>Name of Applicant</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0012</td>
<td>Company Name</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0013</td>
<td>Primary Use Type</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0014</td>
<td>Secondary Use Type</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0015</td>
<td>Building Type</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0016</td>
<td>Gross Floor Area</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0017</td>
<td>Modelled Floor Area</td>
<td>LV-B</td>
<td>BPRM: 1.1 General Information</td>
<td>ABUPS: Building Area</td>
<td></td>
</tr>
<tr>
<td>Output-0018</td>
<td>Total Floor Area</td>
<td>LV-B</td>
<td>BPRM: 1.1 General Information</td>
<td>ABUPS: Building Area</td>
<td></td>
</tr>
<tr>
<td>Output-0019</td>
<td>Energy Modelled Year (for Hourly data)</td>
<td>Y</td>
<td>Reports\PRM\UseDemand,DetailedTables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0020</td>
<td>Floor Area Primary Use Type (%)</td>
<td>Y</td>
<td>Reports\PRM\UseDemand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0021</td>
<td>Floor Area Secondary Use Type (%)</td>
<td>Y</td>
<td>Reports\PRM\UseDemand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0022</td>
<td>Country</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0023</td>
<td>Province</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0024</td>
<td>City</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0025</td>
<td>Street</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0026</td>
<td>Address</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0027</td>
<td>Latitude</td>
<td>Y</td>
<td>APSimResults/Weather File</td>
<td>Climate Data Summary: V</td>
<td></td>
</tr>
<tr>
<td>Output-0028</td>
<td>Longitude</td>
<td>Y</td>
<td>APSimResults/Weather File</td>
<td>Climate Data Summary: V</td>
<td></td>
</tr>
<tr>
<td>Output-0029</td>
<td>Heating Degree Days</td>
<td></td>
<td>Weather file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0030</td>
<td>Cooling Degree Days</td>
<td></td>
<td>Weather file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0031</td>
<td>2030 Region</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0032</td>
<td>2030 Reference EUI (kWh/m2)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0033</td>
<td>2030 Weighted Reference EUI (kWh/m2)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0034</td>
<td>2030 Target Reduction (%)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0035</td>
<td>2030 Target EUI (kWh/m2)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0036</td>
<td>2030 Reduction</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Label</td>
<td>Field Description</td>
<td>Manual entry</td>
<td>eQuest DOE-2</td>
<td>IES</td>
<td>EnergyPlus</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Output-0037</td>
<td>Proposed - Plug load energy (MJ)</td>
<td>BEPS - MISC Equip</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0038</td>
<td>Proposed - receptacle equipment energy type</td>
<td>Inferred</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0039</td>
<td>Proposed - receptacle equipment consumption</td>
<td>BEPS - MISC Equip</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0040</td>
<td>Proposed - receptacle equipment demand</td>
<td>PS-F</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0041</td>
<td>Proposed - Lights energy (MJ, kWh)</td>
<td>BEPS - AREA LIGHTS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0042</td>
<td>Proposed - Lights electrical annual consumption (kWh)</td>
<td>BEPS - AREA LIGHTS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0043</td>
<td>Proposed - Lights natural gas annual consumption (kWh)</td>
<td>BEPS - AREA LIGHTS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0044</td>
<td>Proposed - Lights energy use intensity (kWh/m2-yr)</td>
<td>Calculated</td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated from ABUPS</td>
<td></td>
</tr>
<tr>
<td>Output-0045</td>
<td>Proposed - interior lighting energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0046</td>
<td>Proposed - interior lighting consumption</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0047</td>
<td>Proposed - interior lighting demand</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0048</td>
<td>Proposed - exterior lighting energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0049</td>
<td>Proposed - exterior lighting consumption</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0050</td>
<td>Proposed - exterior lighting demand</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0051</td>
<td>Proposed - interior lighting - process energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0052</td>
<td>Proposed - interior lighting - process consumption</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0053</td>
<td>Proposed - interior lighting - process demand</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0054</td>
<td>Proposed - Misc. Equipment electrical annual consumption (kWh)</td>
<td>BEPS - MISC EQUIPMNT</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0055</td>
<td>Proposed - Misc. Equipment natural gas annual consumption (kWh)</td>
<td>BEPS - MISC EQUPMT</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0056</td>
<td>Proposed - Misc. Equipment energy use intensity (kWh/m2-yr)</td>
<td>Calculated</td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated from ABUPS</td>
<td></td>
</tr>
<tr>
<td>Output-0057</td>
<td>Proposed - Space heating energy (MJ, kWh)</td>
<td>BEPS - SPACE HEAT</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0058</td>
<td>Proposed - Space Heating electrical annual consumption (kWh)</td>
<td>BEPS - SPACE HEAT</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0059</td>
<td>Proposed - Space Heating natural gas annual consumption (kWh)</td>
<td>BEPS - SPACE HEAT</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0060</td>
<td>Proposed - Space Heating energy use intensity (kWh/m2-yr)</td>
<td>Calculated</td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated from ABUPS</td>
<td></td>
</tr>
<tr>
<td>Output-0061</td>
<td>Proposed - space heating energy type</td>
<td>Inferred</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0062</td>
<td>Proposed - space heating consumption</td>
<td>BEPS - SPACE HEAT</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0063</td>
<td>Proposed - space heating demand</td>
<td>PS-F</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0064</td>
<td>Proposed - Space cooling energy (MJ, kWh)</td>
<td>BEPS - SPACE COOL</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0065</td>
<td>Proposed - Space Cooling electrical annual consumption (kWh)</td>
<td>BEPS - SPACE COOL</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0066</td>
<td>Proposed - Space Cooling natural gas annual consumption (kWh)</td>
<td>BEPS - SPACE COOL</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0067</td>
<td>Proposed - Space Cooling energy use intensity (kWh/m2-yr)</td>
<td>Calculated</td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated from ABUPS</td>
<td></td>
</tr>
<tr>
<td>Output-0068</td>
<td>Proposed - space cooling energy type</td>
<td>Inferred</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0069</td>
<td>Proposed - space cooling consumption</td>
<td>BEPS - SPACE COOL</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0070</td>
<td>Proposed - space cooling demand</td>
<td>PS-F</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0071</td>
<td>Proposed - heat rejection energy type</td>
<td>PS-F</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0072</td>
<td>Proposed - heat rejection consumption</td>
<td>BEPS - HEAT REJECT</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0073</td>
<td>Proposed - heat rejection demand</td>
<td>PS-F</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Field Label</td>
<td>Field Description</td>
<td>Manual entry</td>
<td>eQuest DOE-2</td>
<td>IES</td>
<td>EnergyPlus</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>Output-0074</td>
<td>Proposed - Pumps energy (MJ)</td>
<td>BEPS - PUMPS & MISC</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0075</td>
<td>Proposed - Pumps electrical annual consumption (kWh)</td>
<td>BEPS - PUMPS & MISC</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0076</td>
<td>Proposed - Pumps natural gas annual consumption (kWh)</td>
<td>BEPS - PUMPS & MISC</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0077</td>
<td>Proposed - Pumps energy use intensity (kWh/m2-yr)</td>
<td>Calculated</td>
<td>IES</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0078</td>
<td>Proposed - pumps energy type</td>
<td>Inferred</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0079</td>
<td>Proposed - pumps consumption</td>
<td>BEPS - PUMPS & MISC</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0080</td>
<td>Proposed - pumps demand</td>
<td>PS-F</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0081</td>
<td>Proposed - Fans energy (MJ)</td>
<td>BEPS - VENT FANS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0082</td>
<td>Proposed - Fans electrical annual consumption (kWh)</td>
<td>BEPS - VENT FANS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0083</td>
<td>Proposed - Fans natural gas annual consumption (kWh)</td>
<td>BEPS - VENT FANS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0084</td>
<td>Proposed - Fans energy use intensity (kWh/m2-yr)</td>
<td>Calculated</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0085</td>
<td>Proposed - fans - interior ventilation energy type</td>
<td>Inferred</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0086</td>
<td>Proposed - fans - interior ventilation consumption</td>
<td>BEPS - VENT FANS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0087</td>
<td>Proposed - fans - interior ventilation demand</td>
<td>PS-F</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0088</td>
<td>Proposed - fans - parking garage energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0089</td>
<td>Proposed - fans - parking garage consumption</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0090</td>
<td>Proposed - fans - parking garage demand</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0091</td>
<td>Proposed - Service Hot Water energy (MJ, kWh)</td>
<td>BEPS - DOMHOT WATER</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0092</td>
<td>Proposed - Service Hot Water electrical annual consumption (kWh)</td>
<td>BEPS - DOMHOT WATER</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0093</td>
<td>Proposed - Service Hot Water natural gas annual consumption (kWh)</td>
<td>BEPS - DOMHOT WATER</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0094</td>
<td>Proposed - Service Hot Water energy use intensity (kWh/m2-yr)</td>
<td>Calculated</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0095</td>
<td>Proposed - service water heating energy type</td>
<td>Inferred</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0096</td>
<td>Proposed - service water heating consumption</td>
<td>BEPS - DOMHOT WATER</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0097</td>
<td>Proposed - service water heating demand</td>
<td>PS-F</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0098</td>
<td>Proposed - IT equipment energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0099</td>
<td>Proposed - IT equipment consumption</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0100</td>
<td>Proposed - IT equipment demand</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0101</td>
<td>Proposed - refrigeration equipment energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0102</td>
<td>Proposed - refrigeration equipment consumption</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0103</td>
<td>Proposed - refrigeration equipment demand</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0104</td>
<td>Proposed - fans - kitchen ventilation energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0105</td>
<td>Proposed - fans - kitchen ventilation consumption</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0106</td>
<td>Proposed - fans - kitchen ventilation demand</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0107</td>
<td>Proposed - cooking energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0108</td>
<td>Proposed - cooking consumption</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0109</td>
<td>Proposed - cooking demand</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0110</td>
<td>Proposed - industrial process energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Field Label</td>
<td>Field Description</td>
<td>Manual entry</td>
<td>eQuest DOE-2</td>
<td>IES</td>
<td>EnergyPlus</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
<td>--------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Output-0111</td>
<td>Proposed - industrial process consumption</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0112</td>
<td>Proposed - industrial process demand</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0113</td>
<td>Proposed - elevators and escalators energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0114</td>
<td>Proposed - elevators and escalators consumption</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0115</td>
<td>Proposed - elevators and escalators demand</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0116</td>
<td>Proposed - heat pump supplementary energy type</td>
<td>BEPS or N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0117</td>
<td>Proposed - heat pump supplementary consumption</td>
<td>BEPS or N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0118</td>
<td>Proposed - heat pump supplementary demand</td>
<td>BEPS or N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0119</td>
<td>Proposed - Total peak demand summer (kW)</td>
<td>N/A</td>
<td>Reports\PRM\VistaResults,Detailed Tables</td>
<td>Calculated from ECPDM</td>
<td></td>
</tr>
<tr>
<td>Output-0120</td>
<td>Proposed - Total peak demand winter (kW)</td>
<td>N/A</td>
<td>Reports\PRM\VistaResults,Detailed Tables</td>
<td>Calculated from ECPDM</td>
<td></td>
</tr>
<tr>
<td>Output-0121</td>
<td>Proposed - Total peak (kW)</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0122</td>
<td>Proposed - Renewables - Electric (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0123</td>
<td>Proposed - Total - Electric (kWh), (MJ)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0124</td>
<td>Proposed - Renewables - Natural Gas (kWh)</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: On-Site Thermal Sources</td>
<td></td>
</tr>
<tr>
<td>Output-0125</td>
<td>Proposed - Total - Natural Gas (kWh),(m3),(MJ)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0126</td>
<td>Proposed - Total - Oil / Other fuels (MJ)</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0127</td>
<td>Proposed - Hourly electricity consumption data (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0128</td>
<td>Proposed - HVAC Auxiliary</td>
<td>BEPS / NA</td>
<td>Primary VS Other HVAC system</td>
<td>Calculated from ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0129</td>
<td>Proposed - Misc Electrical</td>
<td>BEPS / NA</td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated from ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0130</td>
<td>Proposed - Other Energy Use 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0131</td>
<td>Proposed - Other Energy Use 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0132</td>
<td>Proposed - Total Annual Energy</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: Site and Source Energy</td>
<td></td>
</tr>
<tr>
<td>Output-0133</td>
<td>Proposed - Total Annual Energy Cost</td>
<td>ES-D</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0134</td>
<td>Proposed - annual energy cost - electricity</td>
<td>ES-D</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0135</td>
<td>Proposed - annual energy cost - natural gas</td>
<td>ES-D</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0136</td>
<td>Proposed - annual energy cost - district cooling</td>
<td>ES-D</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0137</td>
<td>Proposed - Total Annual co2e emissions</td>
<td>BEPS & Calculation</td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated from ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0138</td>
<td>Proposed - Percentage less co2 emissions</td>
<td>BEPS & Calculation</td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated</td>
<td></td>
</tr>
<tr>
<td>Output-0139</td>
<td>Reference - Plug loads energy (MJ)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0140</td>
<td>Reference - receptacle equipment energy type</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0141</td>
<td>Reference - receptacle equipment consumption - model output x4 orientation</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0142</td>
<td>Reference - receptacle equipment demand - model output x4 orientation</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0143</td>
<td>Reference - Lights total annual energy usage (kWh, MJ)</td>
<td>BEPS - AREA LIGHTS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0144</td>
<td>Reference - Lights electrical annual consumption (kWh)</td>
<td>BEPS - AREA LIGHTS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0145</td>
<td>Reference - Lights natural gas annual consumption (kWh)</td>
<td>BEPS - AREA LIGHTS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0146</td>
<td>Reference - Lights energy use intensity (kWh/m2-yr)</td>
<td>Calculated</td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated from ABUPS</td>
<td></td>
</tr>
<tr>
<td>Output-0147</td>
<td>Reference - interior lighting energy type</td>
<td>Inferred</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Field Label</td>
<td>Field Description</td>
<td>Manual entry</td>
<td>eQuest DOE-2</td>
<td>IES</td>
<td>EnergyPlus</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Output-0148</td>
<td>Reference - interior lighting consumption - model output x4 orientation</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0149</td>
<td>Reference - interior lighting demand - model output x4 orientation</td>
<td></td>
<td></td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0150</td>
<td>Reference - interior lighting - process energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0151</td>
<td>Reference - interior lighting - process consumption - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0152</td>
<td>Reference - interior lighting - process demand - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0153</td>
<td>Reference - exterior lighting energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0154</td>
<td>Reference - exterior lighting consumption - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0155</td>
<td>Reference - exterior lighting demand - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0156</td>
<td>Reference - Misc. Equipment electrical annual consumption (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0157</td>
<td>Reference - Misc. Equipment natural gas annual consumption (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0158</td>
<td>Reference - Misc. Equipment energy use intensity (kWh/m2-yr)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated from ABUPS</td>
<td></td>
</tr>
<tr>
<td>Output-0159</td>
<td>Reference - Space Heating total annual energy usage (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0160</td>
<td>Reference - Space Heating electrical annual consumption (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0161</td>
<td>Reference - Space Heating natural gas annual consumption (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0162</td>
<td>Reference - Space Heating energy use intensity (kWh/m2-yr)</td>
<td>BEPS & Calculation</td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated from ABUPS</td>
<td></td>
</tr>
<tr>
<td>Output-0163</td>
<td>Reference - space heating energy type</td>
<td>Inferred</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0164</td>
<td>Reference - space heating consumption - model output x4 orientation</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0165</td>
<td>Reference - space heating demand - model output x4 orientation</td>
<td></td>
<td></td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0166</td>
<td>Reference - Space Cooling total annual energy usage (kWh, MJ)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0167</td>
<td>Reference - Space Cooling electrical annual consumption (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0168</td>
<td>Reference - Space Cooling natural gas annual consumption (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0169</td>
<td>Reference - Space Cooling energy use intensity (kWh/m2-yr)</td>
<td>BEPS & Calculation</td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated from ABUPS</td>
<td></td>
</tr>
<tr>
<td>Output-0170</td>
<td>Reference - space cooling energy type</td>
<td>Inferred</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0171</td>
<td>Reference - space cooling consumption - model output x4 orientation</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0172</td>
<td>Reference - space cooling demand - model output x4 orientation</td>
<td></td>
<td></td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0173</td>
<td>Reference - heat rejection energy type</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0174</td>
<td>Reference - heat rejection consumption - model output x4 orientation</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0175</td>
<td>Reference - heat rejection demand - model output x4 orientation</td>
<td></td>
<td></td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0176</td>
<td>Reference - Pumps energy (MJ)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0177</td>
<td>Reference - Pumps electrical annual consumption (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0178</td>
<td>Reference - Pumps natural gas annual consumption (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0179</td>
<td>Reference - Pumps energy use intensity (kWh/m2-yr)</td>
<td>BEPS & Calculation</td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated from ABUPS</td>
<td></td>
</tr>
<tr>
<td>Output-0180</td>
<td>Reference - pumps energy type</td>
<td>Inferred</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0181</td>
<td>Reference - pumps consumption - model output x4 orientation</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0182</td>
<td>Reference - pumps demand - model output x4 orientation</td>
<td></td>
<td></td>
<td>DEUCS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0183</td>
<td>Reference - Fans energy (MJ)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Output-0184</td>
<td>Reference - Fans electrical annual consumption (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subc</td>
<td></td>
</tr>
<tr>
<td>Field Label</td>
<td>Field Description</td>
<td>Manual entry</td>
<td>eQuest DOE-2</td>
<td>IES</td>
<td>EnergyPlus</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>-------------------</td>
<td>--------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Output-0185</td>
<td>Reference - Fans natural gas annual consumption (kWh)</td>
<td>BEPS & Calculation</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0186</td>
<td>Reference - Fans energy use intensity (kWh/m2-yr)</td>
<td>BEPS & Calculation</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0187</td>
<td>Reference - fans - interior ventilation energy type</td>
<td>BEPS & Calculation</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0188</td>
<td>Reference - fans - interior ventilation consumption - model output x4 orientation</td>
<td>BEPS & Calculation</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0189</td>
<td>Reference - fans - interior ventilation demand - model output x4 orientation</td>
<td>BEPS & Calculation</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0190</td>
<td>Reference - fans - parking garage energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0191</td>
<td>Reference - fans - parking garage consumption - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0192</td>
<td>Reference - fans - parking garage demand - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0193</td>
<td>Reference - fans - kitchen ventilation energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0194</td>
<td>Reference - fans - kitchen ventilation consumption - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0195</td>
<td>Reference - fans - kitchen ventilation demand - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0196</td>
<td>Reference - Service Hot Water total annual energy usage (kWh, MJ)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0197</td>
<td>Reference - Service Hot Water electrical annual consumption (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0198</td>
<td>Reference - Service Hot Water natural gas annual consumption (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0199</td>
<td>Reference - Service Hot Water energy use intensity (kWh/m2-yr)</td>
<td>BEPS & Calculation</td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated from ABUPS</td>
<td></td>
</tr>
<tr>
<td>Output-0200</td>
<td>Reference - service water heating energy type</td>
<td>Inferred</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0201</td>
<td>Reference - service water heating consumption - model output x4 orientation</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0202</td>
<td>Reference - service water heating demand - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0203</td>
<td>Reference - IT equipment energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0204</td>
<td>Reference - IT equipment consumption - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0205</td>
<td>Reference - IT equipment demand - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0206</td>
<td>Reference - refrigeration equipment energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0207</td>
<td>Reference - refrigeration equipment consumption - model output x4 orientation</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0208</td>
<td>Reference - refrigeration equipment demand - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0209</td>
<td>Reference - cooking energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0210</td>
<td>Reference - cooking consumption - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0211</td>
<td>Reference - cooking demand - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0212</td>
<td>Reference - industrial process energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0213</td>
<td>Reference - industrial process consumption - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0214</td>
<td>Reference - industrial process demand - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0215</td>
<td>Reference - elevators and escalators energy type</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0216</td>
<td>Reference - elevators and escalators consumption - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0217</td>
<td>Reference - elevators and escalators demand - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>DEUCS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0218</td>
<td>Reference - heat pump supplementary energy type</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0219</td>
<td>Reference - heat pump supplementary consumption - model output x4 orientation</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses by Subcategory</td>
<td></td>
</tr>
<tr>
<td>Output-0220</td>
<td>Reference - heat pump supplementary demand - model output x4 orientation</td>
<td>Reports\PRM\UseDemand</td>
<td>ECPDM: Custom Monthly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0221</td>
<td>Reference - Total peak demand summer (kW)</td>
<td></td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated from ECPDM</td>
<td></td>
</tr>
<tr>
<td>Field Label</td>
<td>Field Description</td>
<td>Manual entry</td>
<td>eQuest DOE-2</td>
<td>IES</td>
<td>EnergyPlus</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td>------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Output-0222</td>
<td>Reference - Total peak demand winter (kW)</td>
<td></td>
<td></td>
<td>Reports\PRM\UseDemand</td>
<td>Calculated from ECPDM: Custom Monthly</td>
</tr>
<tr>
<td>Output-0223</td>
<td>Reference - Peak Electric Demand</td>
<td></td>
<td>Reports\PRM\UseDemand</td>
<td></td>
<td>ECPDM: Custom Monthly</td>
</tr>
<tr>
<td>Output-0224</td>
<td>Reference - Hourly electricity consumption data (kWh)</td>
<td></td>
<td></td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses</td>
</tr>
<tr>
<td>Output-0225</td>
<td>Reference - HVAC Auxiliary (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td></td>
<td>Calculated from ABUPS: End Uses</td>
</tr>
<tr>
<td>Output-0226</td>
<td>Reference - Misc Electrical (kWh)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td></td>
<td>Calculated from ABUPS: End Uses</td>
</tr>
<tr>
<td>Output-0227</td>
<td>Reference - Other Energy Use 1 (kWh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0228</td>
<td>Reference - Other Energy Use 2 (kWh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0229</td>
<td>Reference - Total - Electric (MJ)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses</td>
<td></td>
</tr>
<tr>
<td>Output-0230</td>
<td>Reference - Total - Natural Gas (m3),(MJ)</td>
<td>BEPS</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses</td>
<td></td>
</tr>
<tr>
<td>Output-0231</td>
<td>Reference - Total - Oil / Other fuels (MJ)</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses</td>
<td></td>
</tr>
<tr>
<td>Output-0232</td>
<td>Reference - Total Annual Energy</td>
<td>ES-D</td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: Site and Source Energy</td>
<td></td>
</tr>
<tr>
<td>Output-0233</td>
<td>Reference - Total Annual Energy Cost</td>
<td>ES-D</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0234</td>
<td>Reference - Total Annual CO2 Emissions</td>
<td>Calculated</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0235</td>
<td>Reference - annual energy cost - electricity - model output x4 orientation</td>
<td>ES-D</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0236</td>
<td>Reference - annual energy cost - natural gas - model output x4 orientation</td>
<td>ES-D</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0237</td>
<td>Reference - annual energy cost - district cooling - model output x4 orientation</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0238</td>
<td>Electric GHGs</td>
<td>Calculated</td>
<td>Calculated from Reports\PRM\UseDemand</td>
<td>Calculated from ABUPS: End Uses</td>
<td></td>
</tr>
<tr>
<td>Output-0239</td>
<td>Gas GHGs</td>
<td>Calculated</td>
<td>Calculated from Reports\PRM\UseDemand</td>
<td>Calculated from ABUPS: End Uses</td>
<td></td>
</tr>
<tr>
<td>Output-0240</td>
<td>Energy Modelling Software</td>
<td>Y</td>
<td></td>
<td></td>
<td>Calculated from ABUPS: End Uses</td>
</tr>
<tr>
<td>Output-0241</td>
<td>% Energy Use Reduction</td>
<td>Calculated</td>
<td>Reports\PRM\UseDemand</td>
<td></td>
<td>Calculated from Envelope Summary</td>
</tr>
<tr>
<td>Output-0242</td>
<td>% Energy Cost Reduction</td>
<td>Calculated</td>
<td>Reports\PRM\UseDemand</td>
<td></td>
<td>Calculated from Envelope Summary</td>
</tr>
<tr>
<td>Output-0243</td>
<td>Proposed Electricity Cost</td>
<td>ES-D</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0244</td>
<td>Proposed Natural Gas Cost</td>
<td>ES-D</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0245</td>
<td>Proposed Oil / Other Fuel Cost</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0246</td>
<td>Proposed Renewables Cost</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0247</td>
<td>Reference Electricity Cost</td>
<td>ES-D</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0248</td>
<td>Reference Natural Gas Cost</td>
<td>ES-D</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0249</td>
<td>Reference Oil / Other fuels Cost</td>
<td>N/A</td>
<td>Reports\PRM\UseDemand</td>
<td>ERSR: Annual Cost</td>
<td></td>
</tr>
<tr>
<td>Output-0250</td>
<td>Windows Usi</td>
<td>LV-D</td>
<td>Calculated from Reports\PRM\UseDemand</td>
<td>Calculated from Envelope Summ</td>
<td></td>
</tr>
<tr>
<td>Output-0251</td>
<td>Walls (Above Grade) Rsi</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>Envelope Summary: Exterior Wall Insulation</td>
<td></td>
</tr>
<tr>
<td>Output-0252</td>
<td>Roof Rsi</td>
<td>LV-D</td>
<td>Calculated from Reports\PRM\UseDemand</td>
<td>Calculated from Envelope Summ</td>
<td></td>
</tr>
<tr>
<td>Output-0253</td>
<td>Average Enclosure Above Grade Rsi</td>
<td>LV-D</td>
<td>Calculated from Reports\PRM\UseDemand</td>
<td>Calculated from Envelope Summ</td>
<td></td>
</tr>
<tr>
<td>Output-0254</td>
<td>Walls (Below Grade) Rsi</td>
<td>LV-D</td>
<td>Calculated from Reports\PRM\UseDemand</td>
<td>Calculated from Envelope Summ</td>
<td></td>
</tr>
<tr>
<td>Output-0255</td>
<td>Window SHGC</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>Envelope Summary: Exterior Wall Insulation</td>
<td></td>
</tr>
<tr>
<td>Output-0256</td>
<td>Windows Tvis</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>Envelope Summary: Exterior Wall Insulation</td>
<td></td>
</tr>
<tr>
<td>Output-0257</td>
<td>North Surface Area - Walls Including Windows</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Window-Wall Ratio</td>
<td></td>
</tr>
<tr>
<td>Output-0258</td>
<td>East Surface Area - Walls Including Windows</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Window-Wall Ratio</td>
<td></td>
</tr>
<tr>
<td>Field Label</td>
<td>Field Description</td>
<td>Manual entry</td>
<td>eQuest DOE-2</td>
<td>IES</td>
<td>EnergyPlus</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--------------</td>
<td>--------------------</td>
<td>---------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Output-0259</td>
<td>South Surface Area - Walls Including Windows</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Window-Wall Ratio</td>
<td></td>
</tr>
<tr>
<td>Output-0260</td>
<td>West Surface Area - Walls Including Windows</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Window-Wall Ratio</td>
<td></td>
</tr>
<tr>
<td>Output-0261</td>
<td>Roof Surface Area - Roof Including Skylights</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Skylight-Roof Ratio</td>
<td></td>
</tr>
<tr>
<td>Output-0262</td>
<td>North Surface Area - Windows</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Window-Wall Ratio</td>
<td></td>
</tr>
<tr>
<td>Output-0263</td>
<td>East Surface Area - Windows</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Window-Wall Ratio</td>
<td></td>
</tr>
<tr>
<td>Output-0264</td>
<td>South Surface Area - Windows</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Window-Wall Ratio</td>
<td></td>
</tr>
<tr>
<td>Output-0265</td>
<td>West Surface Area - Windows</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Window-Wall Ratio</td>
<td></td>
</tr>
<tr>
<td>Output-0266</td>
<td>Roof Surface Area - Skylights</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Skylight-Roof Ratio</td>
<td></td>
</tr>
<tr>
<td>Output-0267</td>
<td>Window to Wall Ratio</td>
<td>Calculated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0268</td>
<td>Volume</td>
<td>LV-B Building Total</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Zone Summary</td>
<td></td>
</tr>
<tr>
<td>Output-0269</td>
<td>Underground Wall (m2)</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Zone Summary</td>
<td></td>
</tr>
<tr>
<td>Output-0270</td>
<td>Soffits (m2)</td>
<td>LV-D</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Zone Summary</td>
<td></td>
</tr>
<tr>
<td>Output-0271</td>
<td>Interior LPD (W/m2)</td>
<td>LV-B</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Zone Summary</td>
<td></td>
</tr>
<tr>
<td>Output-0272</td>
<td>Total People #</td>
<td>LV-B</td>
<td>Calculated from IVRS: Zone Summary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0273</td>
<td>Equipment Load Density (W/m2)</td>
<td>LV-B</td>
<td>Reports\PRM\UseDemand</td>
<td>IVRS: Zone Summary</td>
<td></td>
</tr>
<tr>
<td>Output-0274</td>
<td>Max cooling load excluding OA</td>
<td>Calculated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0275</td>
<td>Max heating load excluding OA</td>
<td>Calculated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0276</td>
<td>Max cooling load including OA</td>
<td>Calculated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0277</td>
<td>Max heating load including OA</td>
<td>Calculated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0278</td>
<td>Heating System Level - Capacity (kW)</td>
<td>Calculated</td>
<td>Equipment Summary: Heating Coils & DX Heating Coils</td>
<td>Equipment Summary: Heating Coils & DX Heating Coils</td>
<td></td>
</tr>
<tr>
<td>Output-0279</td>
<td>Heating System Level - Efficiency (%)</td>
<td>Calculated</td>
<td>Reports\PRM\VistaReport (Load/fuel)</td>
<td>Equipment Summary: Heating Coils & DX Heating Coils</td>
<td></td>
</tr>
<tr>
<td>Output-0280</td>
<td>Heating Plant Level - Capacity (kW)</td>
<td>Calculated</td>
<td>Reports\PRM\VistaReport (Load/fuel)</td>
<td>Equipment Summary: Central Plant</td>
<td></td>
</tr>
<tr>
<td>Output-0281</td>
<td>Heating Plant Level - Efficiency (%)</td>
<td>Calculated</td>
<td>Reports\PRM\VistaReport (Load/fuel)</td>
<td>Equipment Summary: Central Plant</td>
<td></td>
</tr>
<tr>
<td>Output-0282</td>
<td>Weighted Average Heating Efficiency</td>
<td>Calculated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0283</td>
<td>Cooling System Level - Capacity (kW)</td>
<td>Calculated</td>
<td>Equipment Summary: Cooling Coils & DX Cooling Coils</td>
<td>Equipment Summary: Cooling Coils & DX Cooling Coils</td>
<td></td>
</tr>
<tr>
<td>Output-0284</td>
<td>Cooling System Level - Efficiency (%)</td>
<td>Calculated</td>
<td>Reports\PRM\VistaReport (Load/fuel)</td>
<td>Equipment Summary: Cooling Coils & DX Cooling Coils</td>
<td></td>
</tr>
<tr>
<td>Output-0285</td>
<td>Cooling Plant Level - Capacity (kW)</td>
<td>Calculated</td>
<td>Reports\PRM\VistaReport (Load/fuel)</td>
<td>Equipment Summary: Central Plant</td>
<td></td>
</tr>
<tr>
<td>Output-0286</td>
<td>Cooling Plant Level - Efficiency (%)</td>
<td>Calculated</td>
<td>Reports\PRM\VistaReport (Load/fuel)</td>
<td>Equipment Summary: Central Plant</td>
<td></td>
</tr>
<tr>
<td>Output-0287</td>
<td>Weighted Average Cooling Efficiency</td>
<td>Calculated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0288</td>
<td>Primary Heating Source</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0289</td>
<td>Primary Cooling Source</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0290</td>
<td>Primary Ventilation System Type</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0291</td>
<td>Total Supply Air (m3/s)</td>
<td>SV-A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0292</td>
<td>Total Outside Air (m3/s)</td>
<td>SV-A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0293</td>
<td>Total Fan Load (kW)</td>
<td>SV-A</td>
<td>Calculated from Reports\PRM\UseDemand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0294</td>
<td>VSD on Fans</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0295</td>
<td>Economizer</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Label</td>
<td>Field Description</td>
<td>Manual entry</td>
<td>eQuest DOE-2</td>
<td>IES</td>
<td>EnergyPlus</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--------------</td>
<td>--------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>Output-0296</td>
<td>VSD on Pumps</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0297</td>
<td>Heat Recovery</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0298</td>
<td>Heat Recovery (% effectiveness)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0299</td>
<td>Lighting Occupancy Sensors</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0300</td>
<td>Lighting Daylight Sensors</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0301</td>
<td>Primary Lighting Fixture Type</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0302</td>
<td>Secondary Lighting Fixture Type</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0303</td>
<td>LEED Version</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0304</td>
<td>Level of Certification</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0305</td>
<td>Certified</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0306</td>
<td>Total LEED points achieved</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0307</td>
<td>Total LEED points available</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0308</td>
<td>EAc1 Reference Standard</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0309</td>
<td>% MRc2</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0310</td>
<td>% MRc4</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0311</td>
<td>% MRc5</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0312</td>
<td>EAc5 Pursued</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0313</td>
<td>EAc1 Points Available</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0314</td>
<td>EAc1 Points Achieved</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0315</td>
<td>% Irrigation Reduction (WEc1)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0316</td>
<td>% In-Building Reduction (WEc3)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0317</td>
<td>Total In-Building Potable Water Use (L/yr)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0318</td>
<td>Total In-Building Grey Water Use (L/yr)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0319</td>
<td>Incremental cost of equipment</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0320</td>
<td>Incremental cost of labour</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0321</td>
<td>Incremental cost of energy assessments</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0322</td>
<td>Incremental cost of design</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0323</td>
<td>Incremental cost of project management</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0324</td>
<td>Incremental cost of shipping</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0325</td>
<td>Incremental cost of documentation</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0326</td>
<td>LLT Option followed</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0327</td>
<td>Floor Area - Assembly</td>
<td>Y</td>
<td></td>
<td></td>
<td>Reports\PRM\UseDemand</td>
</tr>
<tr>
<td>Output-0328</td>
<td>Floor Area - Health/Institutional</td>
<td>Y</td>
<td></td>
<td></td>
<td>Reports\PRM\UseDemand</td>
</tr>
<tr>
<td>Output-0329</td>
<td>Floor Area - Hotel/Motel</td>
<td>Y</td>
<td></td>
<td></td>
<td>Reports\PRM\UseDemand</td>
</tr>
<tr>
<td>Output-0330</td>
<td>Floor Area - Light Manufacturing</td>
<td>Y</td>
<td></td>
<td></td>
<td>Reports\PRM\UseDemand</td>
</tr>
<tr>
<td>Output-0331</td>
<td>Floor Area - Multifamily</td>
<td>Y</td>
<td></td>
<td></td>
<td>Reports\PRM\UseDemand</td>
</tr>
<tr>
<td>Output-0332</td>
<td>Floor Area - Office</td>
<td>Y</td>
<td></td>
<td></td>
<td>Reports\PRM\UseDemand</td>
</tr>
<tr>
<td>Field Label</td>
<td>Field Description</td>
<td>Manual entry</td>
<td>eQuest DOE-2</td>
<td>IES</td>
<td>EnergyPlus</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>--------------</td>
<td>-----------------------------------</td>
<td>--------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Output-0333</td>
<td>Floor Area - Restaurant</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0334</td>
<td>Floor Area - Retail</td>
<td>Y</td>
<td></td>
<td>Reports\PRM\UseDemand</td>
<td></td>
</tr>
<tr>
<td>Output-0335</td>
<td>Floor Area - School</td>
<td>Y</td>
<td></td>
<td>Reports\PRM\UseDemand</td>
<td></td>
</tr>
<tr>
<td>Output-0336</td>
<td>Floor Area - Warehouse</td>
<td>Y</td>
<td></td>
<td>Reports\PRM\UseDemand</td>
<td></td>
</tr>
<tr>
<td>Output-0337</td>
<td>Floor Area - Other</td>
<td>Y</td>
<td></td>
<td>Reports\PRM\UseDemand</td>
<td></td>
</tr>
<tr>
<td>Output-0338</td>
<td>Proposed Building Description</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0339</td>
<td>HVAC System Description - Reference Bldg Design</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0340</td>
<td>HVAC System Description - Proposed Design</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0341</td>
<td>Energy Efficiency Features in Proposed Design</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0342</td>
<td>Select Fuel - Service water heating</td>
<td>BEPS</td>
<td></td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses</td>
</tr>
<tr>
<td>Output-0343</td>
<td>Select Fuel - Space cooling</td>
<td>BEPS</td>
<td></td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses</td>
</tr>
<tr>
<td>Output-0344</td>
<td>Select Fuel - Space heating fuel</td>
<td>BEPS</td>
<td></td>
<td>Reports\PRM\UseDemand</td>
<td>ABUPS: End Uses</td>
</tr>
<tr>
<td>Output-0345</td>
<td>Select Fuel - Renewable energy fuel</td>
<td>N/A</td>
<td></td>
<td>Reports\PRM\UseDemand</td>
<td>N/A</td>
</tr>
<tr>
<td>Output-0346</td>
<td>Renewable energy costs (MJ)</td>
<td>N/A</td>
<td></td>
<td>Reports\PRM\UseDemand</td>
<td>N/A</td>
</tr>
<tr>
<td>Output-0347</td>
<td>Renewable REC system</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0348</td>
<td>Select Fuel - Energy credit</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Output-0349</td>
<td>Energy credit costs (MJ)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Output-0350</td>
<td>Energy credit REC system</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0351</td>
<td>Electricity consumption units</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0352</td>
<td>Electricity demand units</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0353</td>
<td>Electricity Utility Rate Name</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0354</td>
<td>Electricity Utility Rate Structure</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0355</td>
<td>Natural Gas consumption units</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0356</td>
<td>Natural Gas demand units</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0357</td>
<td>Natural Gas Utility Rate Name</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0358</td>
<td>Natural Gas Utility Rate Structure</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0359</td>
<td>District Cooling consumption units</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0360</td>
<td>District Cooling demand units</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0361</td>
<td>District Cooling Utility Rate Name</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0362</td>
<td>District Cooling Utility Rate Structure</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0363</td>
<td>Site energy consumption unit used</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0364</td>
<td>Source energy consumption unit used</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0365</td>
<td>On-site renewable energy systems? (Y/N)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0366</td>
<td>Renewable System - type</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0367</td>
<td>Renewable - Offset energy type</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0368</td>
<td>Renewable - Rated capacity</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0369</td>
<td>Renewable - Annual site energy generated</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Label</td>
<td>Field Description</td>
<td>Manual entry</td>
<td>eQuest DOE-2</td>
<td>IES</td>
<td>EnergyPlus</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td>-----</td>
<td>------------</td>
</tr>
<tr>
<td>Output-0370</td>
<td>Renewable - Annual energy cost offset ($/year)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0371</td>
<td>Exceptional methods? (Y/N)</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0372</td>
<td>Exceptional method - calculation ID</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0373</td>
<td>Exceptional method - Energy type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0374</td>
<td>Exceptional method - Add to baseline / subtract from proposed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0375</td>
<td>Exceptional method - Site energy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0376</td>
<td>Exceptional method - Annual energy cost difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0377</td>
<td>Interior lighting unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0378</td>
<td>Exterior lighting unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0379</td>
<td>Space heating unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0380</td>
<td>Space cooling unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0381</td>
<td>Pumps unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0382</td>
<td>Heat rejection unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0383</td>
<td>Fans - interior ventilation unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0384</td>
<td>Fans - parking garage unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0385</td>
<td>Service water heating unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0386</td>
<td>Receptacle equipment unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0387</td>
<td>IT equipment unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0388</td>
<td>Interior lighting - process unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0389</td>
<td>Refrigeration equipment unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0390</td>
<td>Fans - kitchen ventilation unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0391</td>
<td>Cooking unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0392</td>
<td>Industrial process unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0393</td>
<td>Elevators and escalators unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0394</td>
<td>Heat pump supplementary unregulated?</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0395</td>
<td>Reference - reporting strategy</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0396</td>
<td>Reference - unmet heating hours</td>
<td></td>
<td>DetailedTables</td>
<td></td>
<td>ABUPS: Comfort and Setpoint:</td>
</tr>
<tr>
<td>Output-0397</td>
<td>Proposed - unmet heating hours</td>
<td></td>
<td>DetailedTables</td>
<td></td>
<td>ABUPS: Comfort and Setpoint:</td>
</tr>
<tr>
<td>Output-0398</td>
<td>Reference - unmet cooling hours</td>
<td></td>
<td>DetailedTables</td>
<td></td>
<td>ABUPS: Comfort and Setpoint:</td>
</tr>
<tr>
<td>Output-0399</td>
<td>Proposed - unmet cooling hours</td>
<td></td>
<td>DetailedTables</td>
<td></td>
<td>ABUPS: Comfort and Setpoint:</td>
</tr>
<tr>
<td>Output-0400</td>
<td>TEDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0401</td>
<td>Infiltration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output-0402</td>
<td>EUI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B:
USE CASE DIAGRAM AND SYSTEM FLOWCHART
Energy Model Data Harvester – Use Case Diagram

Application Folder

Input Project Information
- Edit the Project Setup Workbook "4_setup.xlsx"
 - Add each project to be harvested
 - Select desired Program Output Forms
 - Enter Project Background Information (manual entry items from matrix)
- Save and exit

Input Project Data Files
- Create a folder for each project inside of the “1_Projects” folder.
- Insert required energy model files into project folders

Run Application
- Run the “5_run.exe” executable
 - First, this will read the Project Setup Workbook to determine the projects to be analyzed and the desired outputs
 - Project data files will be parsed and requested output files will be created

Review Results
- A log containing all messages, warnings, and errors will be created in the “3_log” folder
- A file containing a summary of all projects will be created in the “2_Outputs” folder
- A subfolder for each project will be created in the “2_Outputs” folder that will contain the requested output files
APPENDIX C: SOURCE CODE
import fdfgen
import subprocess
import os
import tempfile

def fdf(template, fields, output):
 fdf_file = fdfgenforge_fdf('', fields)
 handle, tmp_file = tempfile.mkstemp()
 f = open(tmp_file, 'wb')
 f.write(fdf_file)
 f.close()
 subprocess.run(['pdftk', 'templates/' + template, 'fill_form', tmp_file, 'output', output])
 os.close(handle)
 os.remove(tmp_file)
from bs4 import BeautifulSoup
from units import Area, Energy, Power, Currency

def splitUp(table):
 output = []
 outputRow = []
 for row in table.findAll('tr'):
 for column in row.findAll(['th', 'td']):
 outputRow.append(' '.join(column.findAll(text=True)))
 output.append(outputRow)
 outputRow = []
 return output

def spaceSummaryParse(table):
 output = {}
 # Check units
 header = table[0]
 for column in header[1:]:
 if column[-3:] != 'm^2':
 print('spaceSummaryParse area units error!:', column)

 for row in table[2:]:
 output[row[0]] = {
 'conditioned': Area(row[1], 'm^2'),
 'unconditioned': Area(row[2], 'm^2'),
 'total': Area(row[3], 'm^2')}
 return output

def prmParse(table):
 energy = []
 demand = []

 body = table[1:-2]

 for row in body[:-2]:
 if ' '.join(row[3].split(' ')[-1]).strip() == 'Energy use':
 energy.append(row)
 elif ' '.join(row[3].split(' ')[-1]).strip() == 'Demand':
 demand.append(row)

 energyOutput = {}
 demandOutput = {}

 for row in energy:
 process = row[1] == 'Yes'
 units = row[3].split(' ')[-1]

 energyOutput[row[0]] = {
 'process': process,
 'type': row[2],
 'proposed': Energy(row[4], units),
 'reference': Energy(row[6], units),}

 for row in demand:
units = row[3].split(' ')[-1]

demandOutput[row[0]] = {'process':process,
 'type':row[2],
 'proposed':Power(row[4],units),
 'reference':Power(row[6],units),}

return energyOutput,demandOutput

def economicsParse(table):
 energy = {}
 cost = {}

 costUnits = table[1][1][4:].strip('()')
 for row in table[2:]:
 cost[row[0]] = {
 'proposed': Currency(row[3],costUnits),
 'reference':Currency(row[5],costUnits),
 }

 for row in table[2:]:
 if row[1]: energyUnits = row[1]
 else: energyUnits = 'kwh'

 energy[row[0]] = {
 'proposed': Energy(row[2],energyUnits),
 'reference':Energy(row[4],energyUnits),
 }

 return energy, cost

def isIES(file):
 with open (file) as f:
 html_doc = f.read()

 soup = BeautifulSoup(html_doc, 'html.parser')

 if soup.find(class_='iestext'):
 return True
 else: return False

def iesParse(file):
 with open(file) as f:
 html_doc = f.read()

 soup = BeautifulSoup(html_doc, 'html.parser')

 spaceSummary = soup.findAll(text='1.2 - Space Summary')[-1].parent.parent.parent.next_sibling.find('table')
 prm = soup.find(id='tableprmcompliance')
 economics = soup.find(text='1.8.2 (b) Energy Cost & Consumption by energy Type - PRM Compliance').parent.parent.parent.next_sibling.find('table')
spaceSummary = splitUp(spaceSummary)[:-1]
prm = splitUp(prm)
economics = splitUp(economics)

spaceSummary = spaceSummaryParse(spaceSummary)
prmEnergy, prmDemand = prmParse(prm)
economicsEnergy, economicsCost = economicsParse(economics)

return {'spaceSummary': spaceSummary, 'prmEnergy': prmEnergy, 'prmDemand': prmDemand, 'economicsEnergy': economicsEnergy, 'economicsCost': economicsCost}
import fdf

def obc(p, output_file_path):
 remaining = [
 ('Interior Lighting', 'test7'),
 ('Other_2', 'test8'),
 ('1_3', 'test9'),
 ('2_3', 'test10'),
 ('Building Energy 7', 'test17'),
 ('Building Energy 8', 'test18'),
 ('Units 7', 'test25'),
 ('Units 8', 'test26'),
 ('', 'test30'),
 ('2_6', 'test33'),
 ('Percentage less CO2e emissions by proposed building', 'test34'),
 ('undefined_7', 'test35'),
 ('undefined_9', 'test36')
]

 fields = []

 if p.prop_int_lights_total: fields.append(('Building Energy 6', '{:.0f}'.format(p.prop_int_lights_total.get('kwh'))))
 if p.prop_space_heat_total: fields.append(('Building Energy 1','{:.0f}'.format(p.prop_space_heat_total.get('kwh'))))
 if p.prop_space_cool_total: fields.append(('Building Energy 2','{:.0f}'.format(p.prop_space_cool_total.get('kwh'))))
 if p.prop_vent_fans_total: fields.append(('Building Energy 3','{:.0f}'.format(p.prop_vent_fans_total.get('kwh'))))
 if p.prop_misc_total: fields.append(('Building Energy 4','{:.0f}'.format(p.prop_misc_total.get('kwh'))))
 if p.prop_dhw_total: fields.append(('Building Energy 5','{:.0f}'.format(p.prop_dhw_total.get('kwh'))))
 if p.prop_energy_total: fields.append(('undefined_5','{:.0f}'.format(p.prop_energy_total.get('kwh'))))
 if p.prop_carbon_total: fields.append(('1_6','{:.0f}'.format(p.prop_carbon_total.get('kg'))))
 if p.prop_cost_total: fields.append(('fill_63','{:.0f}'.format(p.prop_cost_total)))
 # if p.: fields.append(('','{:.0f}'.format(p..get('kwh'))))

 if p.ref_int_lights_total : fields.append(('Energy 6', '{:.0f}'.format(p.ref_int_lights_total.get('kwh'))))
 if p.ref_space_heat_total: fields.append(('Energy 1','{:.0f}'.format(p.ref_space_heat_total.get('kwh'))))
 if p.ref_space_cool_total: fields.append(('Energy 2','{:.0f}'.format(p.ref_space_cool_total.get('kwh'))))
 if p.ref_vent_fans_total: fields.append(('Energy 3','{:.0f}'.format(p.ref_vent_fans_total.get('kwh'))))
 if p.ref_misc_total: fields.append(('Energy 4','{:.0f}'.format(p.ref_misc_total.get('kwh'))))
 if p.ref_dhw_total: fields.append(('Energy 5','{:.0f}'.format(p.ref_dhw_total.get('kwh'))))
 if p.ref_energy_total: fields.append(('undefined_4','{:.0f}'.format(p.ref_energy_total.get('kwh'))))
if p.ref_energy_total: fields.append(('Percentage less energy used', '{:.1%}'.format(1 - p.prop_energy_total.get()/p.ref_energy_total.get())))
if p.ref_carbon_total: fields.append(('Total Annual CO2e Emissions', '{:.0f}'.format(p.ref_carbon_total.get('kg'))))
if p.ref_cost_total: fields.append(('Total Annual CO2e Emissions', '{:.0f}'.format(p.ref_cost_total)))
if p.: fields.append(('','{:,.0f}'.format(p..get('kwh'))))

fields.append(('Units 1', 'kWh'))
fields.append(('Units 2', 'kWh'))
fields.append(('Units 3', 'kWh'))
fields.append(('Units 4', 'kWh'))
fields.append(('Units 5', 'kWh'))
fields.append(('Units 6', 'kWh'))
fields.append(('undefined_6', 'kWh'))
fields.append(('undefined_10b', 'kg'))

fd.fdf('OBC_SB-10.pdf', fields, output_file_path)
```python
import openpyxl

from openpyxl.chart import (PieChart, Reference)

def sbd(p, output_filepath):
    wb = openpyxl.load_workbook('templates/sbd.xlsx')
    ws = wb.active

    ws['C4'] = p.prop_area_lights_total.get('kwh')
    ws['D4'] = p.prop_misc_total.get('kwh')
    ws['E4'] = p.prop_space_heat_total.get('kwh')
    ws['F4'] = p.prop_space_cool_total.get('kwh')
    ws['G4'] = p.prop_vent_fans_total.get('kwh')
    ws['H4'] = p.prop_dhw_total.get('kwh')
    ws['L3'] = p.prop_energy_total.get('kwh')
    ws['L4'] = p.prop_carbon_total.get('kg')

    if p.reference:
        ws['C3'] = p.ref_area_lights_total.get('kwh')
        ws['D3'] = p.ref_misc_total.get('kwh')
        ws['E3'] = p.ref_space_heat_total.get('kwh')
        ws['F3'] = p.ref_space_cool_total.get('kwh')
        ws['G3'] = p.ref_vent_fans_total.get('kwh')
        ws['H3'] = p.ref_dhw_total.get('kwh')
        ws['K3'] = p.ref_energy_total.get('kwh')
        ws['K4'] = p.ref_carbon_total.get('kg')

        pie = PieChart()
        pie.width = 18.8468
        pie.height = 7.62

        labels = Reference(ws, min_col=3, max_col=8, min_row=2)
        data = Reference(ws, min_col=3, max_col=8, min_row=3)
        pie.add_data(data, from_rows=True)
        pie.set_categories(labels)
        pie.title = "SB-10 Reference Building"

        ws.add_chart(pie, "B6")

        pie2 = PieChart()
        pie2.width = 18.8468
        pie2.height = 7.62
        data2 = Reference(ws, min_col=3, max_col=8, min_row=4)
        pie2.add_data(data2, from_rows=True)
        pie2.set_categories(labels)
        pie2.title = "SBD Building"
```

ws.add_chart(pie2, "B22")
wb.save(output_filepath)
import fdf, datetime, pprint

def tgs(p, output_filepath):
 fields = []
 remaining = [
 ('prop_summer_demand', 'test35'),
 ('prop_winter_demand', 'test39'),
 ('ref_pump_elec', 'test55'),
 ('ref_pump_eui', 'test56'),
 ('ref_pump_gas', 'test57'),
 ('ref_summer_demand', 'test58'),
 ('ref_winter_demand', 'test62'),
 ('savings_energy_percent', 'test63'),
 ('savings_energy_total', 'test64'),
 ('savings_summer_demand', 'test65'),
 ('savings_winter_demand', 'test66'),
]

 if p.spaNumber: fields.append(('spa_number', p.spaNumber))
 if p.architectCompany: fields.append(('architect_company', p.architectCompany))
 if p.architectEmail: fields.append(('architect_email', p.architectEmail))
 if p.architectName: fields.append(('architect_name', p.architectName))
 if p.architectPhone: fields.append(('architect_phone', p.architectPhone))
 if p.architectTitle: fields.append(('architect_title', p.architectTitle))
 if p.buildingType: fields.append(('building_type', p.buildingType))
 if p.codeCompliancePath: fields.append(('code_compliance_path', p.codeCompliancePath))
 if p.modellerCompany: fields.append(('modeller_company', p.modellerCompany))
 if p.modellerEmail: fields.append(('modeller_email', p.modellerEmail))
 if p.modellerName: fields.append(('modeller_name', p.modellerName))
 if p.modellerPhone: fields.append(('modeller_phone', p.modellerPhone))
 if p.modellerTitle: fields.append(('modeller_title', p.modellerTitle))
 if p.buildingArea: fields.append(('building_area', '{:.0f}'.format(p.buildingArea.get('m2'))+' m²'))
 if p.projectAddress: fields.append(('project_address', p.projectAddress))

 if p.prop_dhw_elec: fields.append(('prop_dhw_elec', '{:.0f}'.format(p.prop_dhw_elec.get('kwh'))))
 if p.prop_dhw_total: fields.append(('prop_dhw_eui', '{:.2f}'.format(p.prop_dhw_total.get('kwh')/p.buildingArea.get('m2'))))
 if p.prop_dhw_gas: fields.append(('prop_dhw_gas', '{:.0f}'.format(p.prop_dhw_gas.get('kwh'))))

 if p.prop_area_lights_elec: fields.append(('prop_lights_elec', '{:.0f}'.format(p.prop_area_lights_elec.get('kwh'))))
 if p.prop_area_lights_total: fields.append(('prop_lights_eui', '{:.2f}'.format(p.prop_area_lights_total.get('kwh')/p.buildingArea.get('m2'))))
 if p.prop_area_lights_gas: fields.append(('prop_lights_gas', '{:.0f}'.format(p.prop_area_lights_gas.get('kwh'))))

 if p.prop_vent_fans_elec: fields.append(('prop_fans_elec', '{:.0f}'.format(p.prop_vent_fans_elec.get('kwh'))))
 if p.prop_vent_fans_total: fields.append(('prop_fans_eui', '{:.2f}'.format(p.prop_vent_fans_elec.get('kwh'))))
if p.prop_vent_fans_total.get('kwh')/p.buildingArea.get('m2'))

if p.prop_vent_fans_gas: fields.append(('prop_fans_gas', '{:,.0f}'.format(p.
prop_vent_fans_gas.get('kwh'))))

if p.prop_space_heat_elec: fields.append(('prop_heat_elec', '{:,.0f}'.format(p.
prop_space_heat_elec.get('kwh'))))

if p.prop_space_heat_total: fields.append(('prop_heat_total', '{:,.2f}'.format(p.
prop_space_heat_total.get('kwh')/p.buildingArea.get('m2'))))

if p.prop_space_heat_gas: fields.append(('prop_heat_gas', '{:,.0f}'.format(p.
prop_space_heat_gas.get('kwh'))))

if p.prop_space_cool_elec: fields.append(('prop_cool_elec', '{:,.0f}'.format(p.
prop_space_cool_elec.get('kwh'))))

if p.prop_space_cool_total: fields.append(('prop_cool_total', '{:,.2f}'.format(p.
prop_space_cool_total.get('kwh')/p.buildingArea.get('m2'))))

if p.prop_space_cool_gas: fields.append(('prop_cool_gas', '{:,.0f}'.format(p.
prop_space_cool_gas.get('kwh'))))

if p.prop_misc_elec: fields.append(('prop_misc_elec', '{:,.0f}'.format(p.
prop_misc_elec.get('kwh'))))

if p.prop_misc_total: fields.append(('prop_misc_total', '{:,.2f}'.format(p.
prop_misc_total.get('kwh')/p.buildingArea.get('m2'))))

if p.prop_misc_gas: fields.append(('prop_misc_gas', '{:,.0f}'.format(p.
prop_misc_gas.get('kwh'))))

if p.prop_elec_total: fields.append(('prop_total_elec', '{:,.0f}'.format(p.
prop_elec_total.get('kwh'))))

if p.prop_energy_total: fields.append(('prop_total_eui', '{:,.2f}'.format(p.
prop_energy_total.get('kwh')/p.buildingArea.get('m2'))))

if p.prop_gas_total: fields.append(('prop_total_gas', '{:,.0f}'.format(p.
prop_gas_total.get('kwh'))))

if p.prop_pumps_elec: fields.append(('prop_pump_elec', '{:,.0f}'.format(p.
prop_pumps_elec.get('kwh'))))

if p.prop_pumps_total: fields.append(('prop_pump_total', '{:,.2f}'.format(p.
prop_pumps_total.get('kwh')/p.buildingArea.get('m2'))))

if p.prop_pumps_gas: fields.append(('prop_pump_gas', '{:,.0f}'.format(p.
prop_pumps_gas.get('kwh'))))

if p.ref_dhw_elec: fields.append(('ref_dhw_elec', '{:,.0f}'.format(p.
ref_dhw_elec.get('kwh'))))

if p.ref_dhw_total: fields.append(('ref_dhw_eui', '{:,.2f}'.format(p.
ref_dhw_total.get('kwh')/p.buildingArea.get('m2'))))

if p.ref_dhw_gas: fields.append(('ref_dhw_gas', '{:,.0f}'.format(p.
ref_dhw_gas.get('kwh'))))

if p.ref_area_lights_elec: fields.append(('ref_lights_elec', '{:,.0f}'.format(p.
ref_area_lights_elec.get('kwh'))))

if p.ref_area_lights_total: fields.append(('ref_lights_eui', '{:,.2f}'.format(p.
ref_area_lights_total.get('kwh')/p.buildingArea.get('m2'))))

if p.ref_area_lights_gas: fields.append(('ref_lights_gas', '{:,.0f}'.format(p.
ref_area_lights_gas.get('kwh'))))

if p.ref_vent_fans_elec: fields.append(('ref_fans_elec', '{:,.0f}'.format(p.
ref_vent_fans_elec.get('kwh'))))

if p.ref_vent_fans_total: fields.append(('ref_fans_eui', '{:,.2f}'.format(p.
ref_vent_fans_total.get('kwh')/p.buildingArea.get('m2'))))

if p.ref_vent_fans_gas: fields.append(('ref_fans_gas', '{:,.0f}'.format(p.
ref_vent_fans_gas.get('kwh'))))

if p.ref_space_heat_elec: fields.append(('ref_heat_elec', '{:,.0f}'.format(p.
ref_space_heat_elec.get('kwh'))))

if p.ref_space_heat_total: fields.append(('ref_heat_eui', '{:,.2f}'.format(p.
ref_space_heat_total.get('kwh')/p.buildingArea.get('m2'))))

if p.ref_space_heat_gas: fields.append(('ref_heat_gas', '{:,.0f}'.format(p.
ref_space_heat_gas.get('kwh'))))
ref_space_heat_total.get('kwh')/p.buildingArea.get('m2'))

if p.ref_space_heat_gas: fields.append(('ref_heat_gas', '{:.0f}'.format(p.ref_space_heat_gas.get('kwh'))))
if p.ref_space_cool_elec: fields.append(('ref_cool_elec', '{:.0f}'.format(p.ref_space_cool_elec.get('kwh'))))
if p.ref_space_cool_total: fields.append(('ref_cool_eui', '{:.2f}'.format(p.ref_space_cool_total.get('kwh')/p.buildingArea.get('m2'))))
if p.ref_space_cool_gas: fields.append(('ref_cool_gas', '{:.0f}'.format(p.ref_space_cool_gas.get('kwh'))))
if p.ref_misc_elec: fields.append(('ref_misc_elec', '{:.0f}'.format(p.ref_misc_elec.get('kwh'))))
if p.ref_misc_total: fields.append(('ref_misc_eui', '{:.2f}'.format(p.ref_misc_total.get('kwh')/p.buildingArea.get('m2'))))
if p.ref_misc_gas: fields.append(('ref_misc_gas', '{:.0f}'.format(p.ref_misc_gas.get('kwh'))))
if p.ref_elec_total: fields.append(('ref_total_elec', '{:.0f}'.format(p.ref_elec_total.get('kwh'))))
if p.ref_energy_total: fields.append(('ref_total_eui', '{:.2f}'.format(p.ref_energy_total.get('kwh')/p.buildingArea.get('m2'))))
if p.ref_gas_total: fields.append(('ref_total_gas', '{:.0f}'.format(p.ref_gas_total.get('kwh'))))
if p.ref_pumps_elec: fields.append(('ref_pump_elec', '{:.0f}'.format(p.ref_pumps_elec.get('kwh'))))
if p.ref_pumps_total: fields.append(('ref_pump_eui', '{:.2f}'.format(p.ref_pumps_total.get('kwh')/p.buildingArea.get('m2'))))
if p.ref_pumps_gas: fields.append(('ref_pump_gas', '{:.0f}'.format(p.ref_pumps_gas.get('kwh'))))

if p.: fields.append('', p.)

fields.append(('modelling_software', p.proposed.type))
fields.append(('date', datetime.datetime.today().strftime('%d/%m/%Y')))

fdf.fdf('TGS.pdf', fields, output_filepath)
class Measure:
 conversion = {}
 default = None

def __init__(self, quantity, units):
 self.units = units.lower()
 self.checkUnits(self.units)

 self.value = float(str(quantity).replace(',', ''))*self.conversion[self.units]

def __add__(self, other):
 if self.__class__ == other.__class__:
 return self.__class__(self.get()+other.get())
 elif other in [0, None]:
 return self
 else:
 return NotImplemented

def __radd__(self, other):
 if other in [0, None]:
 return Energy(self.get())
 else:
 return NotImplemented

def get(self, units=None):
 if units == None:
 units = self.default
 self.checkUnits(units)
 return self.value/self.conversion[units.lower()]

def checkUnits(self, units):
 if units.lower() not in self.conversion.keys():
 print(units, "not in conversion dictionary")

@classmethod
def units(cls):
 return cls.conversion.keys()

class Energy(Measure):
 conversion = {
 'kwh': 0.0036,
 'therm': 0.10548,
 'gj': 1,
 'mj': 0.001,
 'mbtu': 1.05505585
 }
 default = 'gj'

def __init__(self, quantity, units=default):
```python
super().__init__(quantity, units)

class Power(Measure):
    conversion = {
        'mw': 1000000,
        'kw': 1000,
        'w': 1,
        'btu/h': 0.29307107,
        'kbtu/h': 293.0710765
    }
    default = 'w'
    def __init__(self, quantity, units=default):
        super().__init__(quantity, units)

class Area(Measure):
    conversion = {
        'ft2': 0.092903,
        'm2': 1
    }
    default = 'm2'
    def __init__(self, quantity, units=default):
        super().__init__(quantity, units)

class Volume(Measure):
    conversion = {
        'ft3': 0.092903,
        'm3': 1
    }
    default = 'm3'
    def __init__(self, quantity, units=default):
        super().__init__(quantity, units)

class Flow(Measure):
    conversion = {
        'cfm': 0.471947,
        'l/s': 1,
        'm3/s': 1
    }
    default = 'l/s'
    def __init__(self, quantity, units=default):
        super().__init__(quantity, units)

class Currency(Measure):
    conversion = {
        '£': 1.69,
        'cad': 1
    }
    default = 'cad'
    def __init__(self, quantity, units=default):
        super().__init__(quantity, units)

class Mass(Measure):
    conversion = {
```
'tonnes': 10^6,
'kg': 1000,
'g': 1,
}
def __init__(self, quantity, units=default):
 super().__init__(quantity, units)
import math
from units import Energy, Area, Volume, Power, Flow

class SimFile:
 def __init__(self, file):
 self.fullFile = None
 self.reports = None
 self.equestVersion = None

 self.fullFile = self.load(file)
 self.reports = self.parse(self.fullFile)
 self.doeVersion = self.getDoeVersion()

 def load(self, file):
 with open(file, 'r') as f:
 return list(f)

 def parse(self, data):
 reports = []
 report = []
 for row in data:
 if row[0] != '\x0c':
 report.append(row)
 else:
 if report != []:
 reports.append(Report(report))
 report = [row]
 reports.append(Report(report))
 return reports

 def getDoeVersion(self):
 familiarVersions = ['DOE-2.1Ec133', 'DOE-2.2-47h2', 'DOE-2.2-48y']
 usedVersions = []

 for report in self.reports:
 if report.header:
 if report.doeVersion not in familiarVersions:
 print('Unfamiliar DOE version:', report.doeVersion)
 break
 if report.doeVersion not in usedVersions:
 usedVersions.append(report.doeVersion)

 if len(usedVersions) > 1:
 print('Multiple eQuest Versions found:', usedVersions)
 return None
 elif len(usedVersions) == 1:
 return usedVersions[0]
 elif len(usedVersions) == 0:
 print('eQuest Version not found')
 return None
class Report:

 def __init__(self, content):
 self.content = content
 self.header = None
 self.title = None
 self.body = None
 self.doeVersion = None
 self.runDatetime = None

 if self.content[0].strip() == 'DOE-2 UNITS TABLE':
 self.title = 'DOE-2 UNITS TABLE'
 self.body = self.content[1:]
 elif self.content[0].strip() == '':
 if self.content[0].strip() == 'MESSAGE LIST FROM SYSTEMS PROGRAM':
 self.title = 'MESSAGE LIST FROM SYSTEMS PROGRAM'
 self.body = self.content[3:]
 else:
 self.header = self.content[:4]
 self.title = self.header[2][8:12].strip()
 self.body = self.content[4:]

 if self.header:
 self.doeVersion = self.header[0][82:94].strip()

 def mergeHeaders(self, reports):
 header = reports[0].header
 if len(reports) > 1:
 for report in reports:
 if report.header[:3] != header[:3]:
 print("Header Mismatch")
 return header
 return

 def mergeBodies(self, reports):
 merged = []
 [merged.extend(report.body) for report in reports]
 return merged

 def filterReports(self, reports, title):
 return [report for report in reports if report.title == title]

 def checkHeader(self, header, schema, reportTitle):
 for column in schema:
 combined = ' '.join([row[column[2]:column[3]].strip() for row in header]).strip()
 if combined != column[0]:
 print(reportTitle, "Header Schema Error! Expected:", column[0], "Actual:", combined)

 def trimAtRepeatedNewlines(self, lines, count):
 newLineCount = 0
 output = []

 for line in lines:
 if line == '\n':
 newLineCount += 1
```python
else:
    newlineCount = 0
    output.append(line)
    if newlineCount == count:
        break
    return output

def removeBlankLines(self, lines):
    return [line for line in lines if line != '\n']

class LSC(Report):
    def __init__(self, simFile):
        self.simFile = simFile
        reports = simFile.reports
        self.lscReports = self.filterReports(reports, 'LS-C')

        if len(self.lscReports) > 1: print("Multiple LSC reports")

        self.header = self.lscReports[0].header
        self.body = self.lscReports[0].body

        self.coolingLoad, self.heatingLoad = self.lscParse()

    def lscParse(self):
        row = self.body[45]

        if row[0:26].strip() != 'TOTAL LOAD': print('LSC Header Error')
        if row[56:64].strip() != 'KW': print('LSC Units Error')
        if row[103:108].strip() != 'KW': print('LSC Units Error')

        coolingLoad = Power(row[46:56], 'kw')
        heatingLoad = Power(row[93:103], 'kw')

        return coolingLoad, heatingLoad

class SSD(Report):
    def __init__(self, simFile):
        self.simFile = simFile
        reports = simFile.reports
        self.ssdReports = self.filterReports(reports, 'SS-D')

        if len(self.ssdReports) > 1: print("Multiple SSD reports")

        self.header = self.ssdReports[0].header
        self.body = self.ssdReports[0].body

        self.coolingLoad, self.heatingLoad = self.ssdParse()

    def ssdParse(self):
        row = self.body[39]

        if row[0:3].strip() != 'MAX': print('SSD Header Error')

        coolingLoad = Power(row[38:52], 'kbtu/h')
```

heatingLoad = Power(row[89:103], 'kbtu/h')

return coolingLoad, heatingLoad

class PSC(Report):
 def __init__(self, simFile):
 self.simFile = simFile
 reports = simFile.reports
 self.pscReports = self.filterReports(reports, 'PS-C')

 self.header = self.mergeHeaders(self.pscReports)
 self.body = self.mergeBodies(self.pscReports)

 self.boilers, self.chillers = self.pscParse()

 self.boilerLoad = sum([boiler[1] for boiler in self.boilers])
 self.boilerElectricity = sum([boiler[2] for boiler in self.boilers])
 self.boilerFuel = sum([boiler[3] for boiler in self.boilers])

 if self.chillers:
 self.chillerLoad = sum([chiller[1] for chiller in self.chillers])
 self.chillerElectricity = sum([chiller[2] for chiller in self.chillers])
 self.chillerFuel = sum([chiller[3] for chiller in self.chillers])
 else:
 self.chillerLoad = Energy(0, 'mbtu')
 self.chillerElectricity = Energy(0, 'kwh')
 self.chillerFuel = Energy(0, 'mbtu')

 def pscParse(self):
 table = self.trimAtRepeatedNewlines(self.body, 3)

 header = table[:3]
 body = table[4:]

 output = []
 outputRow = []

 if self.simFile.doeVersion[4:7] == '2.1':
 headerSchema = [
 ('ANNUAL LOAD (MBTU)', '', 90, 99),
 ('ELEC USED (KWH)', '', 108, 117),
 ('THERMAL USED (MBTU)', '', 117, 127),
]
 boilerList = ['HW-BOILER']
 chillerList = ['OPEN-CENT-CHLR', 'OPEN-REC-CHLR', 'DBUN-CHLR']
 ignoreList = ['COOLING-TWR']
 bodySchema = headerSchema[:]
 bodySchema.insert(0, (Name', '', 0, 16))

 self.checkHeader(header, headerSchema, 'PS-C')

 boilers = []
 chillers = []

 for i, v in enumerate(body):
if i % 2 == 0:
 for i2, v2 in enumerate(bodySchema):
 value = v[v2[2]:v2[3]]
 if i2 in [1, 3]:
 outputRow.append(Energy(value, 'mbtu'))
 elif i2 == 2:
 outputRow.append(Energy(value, 'kwh'))
 elif i2 == 0:
 outputRow.append(value.strip())
 if outputRow[0] in boilerList:
 boilers.append(outputRow)
 elif outputRow[0] in chillerList:
 chillers.append(outputRow)
 elif outputRow[0] in ignoreList:
 pass
 else:
 print("Unrecognized Equipment:", outputRow[0])
 outputRow = []

output = (boilers, chillers)

elif self.simFile.doeVersion[4:7] == '2.2':
 headerSchema = [
 ('COOL LOAD (MBTU) (KBTU/HR)', '', 11, 21),
 ('HEAT LOAD (MBTU) (KBTU/HR)', '', 23, 33),
 ('ELEC USE (KWH) (KW)', '', 35, 45),
 ('FUEL USE (MBTU) (KBTU/HR)', '', 47, 57),
]
 bodySchema = headerSchema[:]
 boilerList = ['boiler']
 chillerList = ['chiller']
 ignoreList = ['tower', 'cooling', 'dhw', 'wh', 'dw']
 self.checkHeader(header, headerSchema, 'PS-C')

boilers = []
chillers = []

for i, v in enumerate(body):
 mod = i % 4
 if mod == 0:
 outputRow.append(v[0:32].strip())
 elif mod == 1:
 for column in bodySchema:
 if v[column[2]:column[3]].strip() == '':
 outputRow.append(0)
 else:
 outputRow.append(abs(float(v[column[2]:column[3]])))
 output.append(outputRow)
 outputRow = []
 continue

output = [row for row in output if row[1] or row[2]] # remove pumps (equipment with no loads)

for item in output:
identified = False
name = item[0].lower()

for boiler in boilerList:
 if boiler in name:
 boilers.append(item)
 identified = True
 break
for chiller in chillerList:
 if chiller in name:
 chillers.append(item)
 identified = True
 break
for ignore in ignoreList:
 if ignore in name:
 identified = True
 break
if not identified:
 if not item[1]:
 boilers.append(item)
 identified = True
 continue
if not identified:
 if float(item[2]) == 0:
 chillers.append(item)
 identified = True
 continue

boilers = [[boiler[0], Energy(boiler[1]+boiler[2], 'mbtu'), Energy(boiler[3], 'kwh'), Energy(boiler[4], 'mbtu')] for boiler in boilers]
chillers = [[chiller[0], Energy(chiller[1]+chiller[2], 'mbtu'), Energy(chiller[3], 'kwh'), Energy(chiller[4], 'mbtu')] for chiller in chillers]

output = (boilers, chillers)
return output

class SSH(Report):
 def __init__(self, simFile):
 self.simFile = simFile
 reports = simFile.reports
 self.sshReports = self.filterReports(reports, 'SS-H')

 self.parsed = self.sshParse()

 # for system in self.parsed:
 def sshParse(self):
 header1Schema = [
 ('- -F A N E L E C- - -', '', 0, 29),
 ('- -F U E L H E A T- - -', '', 32, 55),
header2Schema =

 ("MAXIMUM FAN LOAD (KW)", '', 17, 29),
 ("MAXIMUM GAS OIL LOAD (KBTU/HR)", '', 42, 55),
 ("MAXIMUM GAS OIL LOAD (KBTU/HR)", '', 68, 81),
 ("MAXIMUM ELECTRIC LOAD (KW)", '', 93, 105),
 ("MAXIMUM ELECTRIC LOAD (KW)", '', 117, 129),

]

bodySchema = header2Schema[:]

if self.simFile.doeVersion[4:7] == '2.1':
 titleSlice = slice(46, 92)
elif self.simFile.doeVersion[4:7] == '2.2':
 titleSlice = slice(42, 92)

output = []

for system in self.sshReports:

 outputRow = []

 outputRow.append(system.header[2][titleSlice].strip())

 table = self.removeBlankLines(system.body)
 self.checkHeader([table[0]], header1Schema, 'SS-H')
 self.checkHeader(table[1:5], header2Schema, 'SS-H')

 maxRow = table[19]

 for i, v in enumerate(bodySchema):
 value = maxRow[v[2]:v[3]]
 if i in [0, 3, 4]: outputRow.append(Power(value, 'kw'))
 elif i in [1, 2]: outputRow.append(Power(value, 'kbtu/h'))

 output.append(outputRow)

return output

class SVA(Report):
 def __init__(self, simFile):
 self.simFile = simFile
 reports = simFile.reports
 self.svaReports = self.filterReports(reports, 'SV-A')

 self.parsed = self.svaParse()

 def svaParse(self):
 header1Schema = [
 ('CAPACITY (CFM)', '', 9, 19),
]
 header2Schema = [

('OUTSIDE AIR RATIO', '', 41, 52),
('COOLING EIR (BTU/BTU)', '', 85, 96),
('HEATING EIR (BTU/BTU)', '', 96, 107),

body1Schema = header1Schema[:]
body2Schema = header2Schema[:]

if self.simFile.doeVersion[4:7] == '2.1':
 titleSlice = slice(38, 92)
elif self.simFile.doeVersion[4:7] == '2.2':
 titleSlice = slice(41, 92)

output = []
parsedSystems = []

for system in self.svaReports:
 outputRow = []
 table = self.removeBlankLines(system.body)
 contentRow1 = table[7]
 contentRow2 = table[3]

 title = system.header[2][titleSlice].strip()

 if title in parsedSystems:
 parsedSystems.append(title)
 continue

 if contentRow2[0:8].strip() in ['FPH', 'SUM']:
 continue

 parsedSystems.append(title)

 outputRow.append(title)

 self.checkHeader(table[4:7], header1Schema, 'SV-A')
 self.checkHeader(table[0:3], header2Schema, 'SV-A')

 for i, v in enumerate(body1Schema):
 value = contentRow1[v[2]:v[3]]
 outputRow.append(Flow(value, 'cfm'))

 for i, v in enumerate(body2Schema):
 value = contentRow2[v[2]:v[3]]
 outputRow.append(value)

 output.append(outputRow)

return output
class LVB(Report):
```python
def __init__(self, simFile):
    self.simFile = simFile
    reports = simFile.reports
    self.lvbReports = self.filterReports(reports, 'LV-B')

    self.header = self.mergeHeaders(self.lvbReports)
    self.body = self.mergeBodies(self.lvbReports)

    self.parsed, self.totals = self.parseLVB()

    self.people, self.grossArea, self.grossVolume = self.totals

    self.parsedExcluded = [row for row in self.parsed if not self.excludePlenums(row)]


def parseLVB(self):

    headerSchema21 = [
        ('SPACE', 'Space Name', 0, 12),
        ('SPACE*FLOOR MULTIPLIER', 'Multiplier', 12, 23),
        ('SPACE TYPE', 'Space Type', 26, 31),
        ('AZIMUTH', 'Azimuth', 33, 40),
        ('LIGHTING (WATT / SQFT )', 'Lighting Intensity', 41, 49),
        ('PEOPLE', 'People', 52, 58),
        ('EQUIP (WATT / SQFT )', 'Equipment Intensity', 61, 68),
        ('INFILTRATION METHOD', 'Infiltration Method', 70, 82),
        ('AIR CHANGES PER HOUR', 'Air Changes', 84, 95),
        ('AREA (SQFT )', 'Area', 95, 107),
        ('VOLUME (CUFT )', 'Volume', 107, 120)
    ]

    headerSchema22 = [
        ('SPACE', 'Space Name', 0, 29),
        ('SPACE*FLOOR MULTIPLIER', 'Multiplier', 29, 40),
        ('SPACE TYPE', 'Space Type', 41, 46),
        ('AZIM', 'Azimuth', 46, 53),
        ('LIGHTS (WATT / SQFT )', 'Lighting Intensity', 53, 61),
        ('PEOPLE', 'People', 61, 68),
        ('EQUIP (WATT / SQFT )', 'Equipment Intensity', 68, 76),
        ('INFILTRATION METHOD', 'Infiltration Method', 76, 89),
        ('ACH', 'Air Changes', 89, 95),
        ('AREA (SQFT )', 'Area', 95, 107),
        ('VOLUME (CUFT )', 'Volume', 107, 120)
    ]

    bodySchema21, bodySchema22 = headerSchema21[:], headerSchema22[:]

    bodySchema21[0] = (bodySchema22[0][0], bodySchema22[0][1], 0, 16)
```

bodySchema21[1] = (bodySchema22[1][0], bodySchema22[1][1], 16, bodySchema21[1][3])

bodySchema22[0] = (bodySchema22[0][0], bodySchema22[0][1], 0, 32)
bodySchema22[1] = (bodySchema22[1][0], bodySchema22[1][1], 32, bodySchema22[1][3])

if self.simFile.doeVersion[4:7] == '2.1':
 headerSchema, bodySchema = headerSchema21, bodySchema21
elif self.simFile.doeVersion[4:7] == '2.2':
 headerSchema, bodySchema = headerSchema22, bodySchema22

table = self.removeBlankLines(self.body)
tableHeader = table[1:4]
tableBody = table[4:-2]

self.checkHeader(tableHeader, headerSchema, 'LV-B')

output = []
outputRow = []

for line in tableBody:
 if line[0:16] == 'Spaces on floor:': continue
 for i, v in enumerate(bodySchema):
 value = line[v[2]:v[3]].strip()
 if i in [1, 3, 4, 5, 6, 8, 9, 10]:
 value = float(value)
 outputRow.append(value)
 output.append(outputRow)
 outputRow = []

totals = table[-1]
totalSchema = [v for i, v in enumerate(bodySchema) if i in [5, 9, 10]]
totalOutput = []

for i, v in enumerate(totalSchema):
 totalOutput.append(float(totals[v[2]:v[3]]))

return output, totalOutput

def excludePlenums(self, row):
 plenums = ['plenum', 'plnm']

 for plenum in plenums:
 if plenum in row[0].lower():
 # print("Assumed Plenum (plenum in name):", row[0],)
 return True

 # print("Assumed Plenum (too short):", row[0], row[10]/row[9])
 return True

 return False
class LVD(Report):
 def __init__(self, simFile):
 reports = simFile.reports
 self.lvdReports = self.filterReports(reports, 'LV-D')

 self.summary = self.lvdReports[-1]

 self.summaryHeader = self.summary.header
 self.summaryBody = self.summary.body

 self.parsed = self.parseLVD()

 self.northWallArea = sum([row[5] for row in self.parsed if row[0] in ['NORTH', 'NORTH-EAST']])
 self.northWindowArea = sum([row[4] for row in self.parsed if row[0] in ['NORTH', 'NORTH-EAST']])
 self.eastWallArea = sum([row[5] for row in self.parsed if row[0] in ['EAST', 'SOUTH-EAST']])
 self.eastWindowArea = sum([row[4] for row in self.parsed if row[0] in ['EAST', 'SOUTH-EAST']])
 self.southWindowArea = sum([row[4] for row in self.parsed if row[0] in ['SOUTH', 'SOUTH-WEST']])
 self.westWallArea = sum([row[5] for row in self.parsed if row[0] in ['WEST', 'NORTH-WEST']])
 self.westWindowArea = sum([row[4] for row in self.parsed if row[0] in ['WEST', 'NORTH-WEST']])

 self.roofArea = [row[5] for row in self.parsed if row[0] == 'ROOF'][0]
 self.skylightArea = [row[4] for row in self.parsed if row[0] == 'ROOF'][0]

 self.undergroundWallArea = sum([row[5] for row in self.parsed if row[0] == 'UNDERGRND'])

 self.windowU = [row[1] for row in self.parsed if row[0] == 'WALLS+ROOFS'][0]
 self.wallAboveU = [row[2] for row in self.parsed if row[0] == 'ALL WALLS'][0]
 self.wallBelowU = sum([row[2] for row in self.parsed if row[0] == 'UNDERGRND'])
 self.roofU = [row[2] for row in self.parsed if row[0] == 'ROOF'][0]
 self.enclosureAboveU = [row[3] for row in self.parsed if row[0] == 'WALLS+ROOFS'][0]

 def parseLVD(self):
 headerSchema = [
 ('AVERAGE U-VALUE/WINDOWS (BTU/HR-SQFT-F)', 'Window U-Value', 0, 35),
 ('AVERAGE U-VALUE/WALLS (BTU/HR-SQFT-F)', 'Wall U-Value', 40, 55),
 ('AVERAGE U-VALUE WALLS+WINDOWS (BTU/HR-SQFT-F)', 'Window+Wall U-Value', 60, 75),
 ('WINDOW AREA (SQFT)', 'Window Area', 77, 90),
 ('WALL AREA (SQFT)', 'Wall Area', 91, 105),
 ('WINDOW+WALL AREA (SQFT)', 'Window+Wall Area', 106, 125)
]

 bodySchema = headerSchema[:]

 return headerSchema, bodySchema
bodySchema[0] = (bodySchema[0][0], bodySchema[0][1], 20, 35)
bodySchema.insert(0, ('Classifier', 'Classifier', 0, 20))
table = self.removeBlankLines(self.summaryBody)
tableHeaders = table[:3]
tableBody = table[3:]

for column in headerSchema:
 combined = ' '.join([row[column[2]:column[3]].strip() for row in tableHeaders]).strip()
 if combined != column[0]: print("LV-D Header Schema Error! Expected:", column[0], "Actual:", combined)

output = []
outputRow = []

for line in tableBody:
 for i, v in enumerate(bodySchema):
 value = line[v[2]:v[3]].strip()
 if i != 0:
 value = float(value)
 outputRow.append(value)
 output.append(outputRow)
 outputRow = []

return output

class BEPU(Report):
 def __init__(self, simFile):
 reports = simFile.reports
 self.bepureports = self.filterReports(reports, 'BEPU')

 if len(self.bepureports) > 1:
 print("Multiple BEPU reports")

 self.header = self.bepureports[0].header
 self.body = self.bepureports[0].body

 self.lightsElec = None
 self.lightsGas = None
 self.equipElec = None
 self.equipGas = None
 self.spaceHeatElec = None
 self.spaceHeatGas = None
 self.spaceCoolElec = None
 self.spaceCoolGas = None
 self.heatRejectElec = None
 self.heatRejectGas = None
 self.pumpsElec = None
 self.pumpsGas = None
 self.fansElec = None
 self.fansGas = None
 self.dhwElec = None
 self.dhwGas = None

 if simFile.doeVersion[4:7] == '2.1':
File - equest.py

```python
652    self.parsed = self.parse21()
653
654    self.lightsElec = Energy(self.parsed[0][2], self.parsed[0][1])
655    self.lightsGas = Energy(self.parsed[1][2], self.parsed[1][1])
656    self.equipElec = Energy(self.parsed[0][3], self.parsed[0][1])
657    self.equipGas = Energy(self.parsed[1][3], self.parsed[1][1])
658    self.spaceHeatElec = Energy(self.parsed[0][4], self.parsed[0][1])
659    self.spaceHeatGas = Energy(self.parsed[1][4], self.parsed[1][1])
660    self.spaceCoolElec = Energy(self.parsed[0][5], self.parsed[0][1])
661    self.spaceCoolGas = Energy(self.parsed[1][5], self.parsed[1][1])
662    self.heatRejectElec = Energy(self.parsed[0][6], self.parsed[0][1])
663    self.heatRejectGas = Energy(self.parsed[1][6], self.parsed[1][1])
664    self.pumpsElec = Energy(self.parsed[0][7], self.parsed[0][1])
665    self.pumpsGas = Energy(self.parsed[1][7], self.parsed[1][1])
666    self.fansElec = Energy(self.parsed[0][8], self.parsed[0][1])
667    self.fansGas = Energy(self.parsed[1][8], self.parsed[1][1])
668    self.dhwElec = Energy(self.parsed[0][9], self.parsed[0][1])
669    self.dhwGas = Energy(self.parsed[1][9], self.parsed[1][1])
670
671    elif simFile.doeVersion[4:7] == '2.2':
672        self.parsed = self.parse22()
673
674        self.areaLightsElec = sum([Energy(row[3], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
675        self.areaLightsGas = sum([Energy(row[3], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
676        self.taskLightsElec = sum([Energy(row[4], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
677        self.taskLightsGas = sum([Energy(row[4], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
678        self.equipElec = sum([Energy(row[5], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
679        self.equipGas = sum([Energy(row[5], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
680        self.spaceHeatElec = sum([Energy(row[6], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
681        self.spaceHeatGas = sum([Energy(row[6], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
682        self.spaceCoolElec = sum([Energy(row[7], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
683        self.spaceCoolGas = sum([Energy(row[7], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
684        self.heatRejectElec = sum([Energy(row[8], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
685        self.heatRejectGas = sum([Energy(row[8], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
686        self.pumpsElec = sum([Energy(row[9], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
687        self.pumpsGas = sum([Energy(row[9], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
688        self.fansElec = sum([Energy(row[10], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
689        self.fansGas = sum([Energy(row[10], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
690        self.refrigDisplayElec = sum([Energy(row[11], row[2]) for row in self.parsed]
```

```python
if row[1] == 'ELECTRICITY')  

self.htPumpElec = sum([Energy(row[12], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
self.htPumpGas = sum([Energy(row[12], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
self.dhwElec = sum([Energy(row[13], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
self.extElec = sum([Energy(row[14], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
self.extGas = sum([Energy(row[14], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])

def parse21(self):
    table = self.removeBlankLines(self.body)

    expectedHeadings = [
        (0, "ENERGY TYPE:", "Energy Type"),
        (1, "SITE UNITS:", "Site Units"),
        (4, "AREA LIGHTS", "Area Lights"),
        (5, "MISC EQUIPMT", "Miscellaneous Equipment"),
        (6, "SPACE HEAT", "Space Heating"),
        (7, "SPACE COOL", "Space Cooling"),
        (8, "HEAT REJECT", "Heat Rejection"),
        (9, "PUMPS & MISC", "Pumps and Miscellaneous"),
        (10, "VENT FANS", "Vent Fans"),
        (11, "DOMHOT WATER", "Domestic Hot Water"),
        (13, "TOTAL", "Total"),
    ]

    for i in expectedHeadings:
        if table[i[0]][:47].strip() != i[1]: print(i[2], "not found in BEPU:", 
        "'" + table[i[0]][:47].strip() + 
        "' vs.", "'" + i[1] + "'"

    numberOfColumns = math.floor((len(table[0]) - 46) / 14)

    if numberOfColumns > 3:
        print("More than 3 columns in BEPU")

    output = []
    outputRow = []

    WIDTH = 14

    for column in range(numberOfColumns):
        start = 46 + WIDTH * column
        if column == numberOfColumns - 1:
            end = len(table[row[0]])
        else:
            end = 46 + WIDTH * (column + 1)
```

for row in expectedHeadings:
 outputRow.append(table[row[0]][start:end].strip())
output.append(outputRow)
outputRow = []

if output[0][0] != 'ELECTRICITY': print("Electricity Column missing")
if output[1][0] != 'NATURAL-GAS': print("Natural Gas Column missing")
if numberOfColumns > 2:
 if output[2][0] != 'RECOVERED': print("Recovered Column missing")

return output

def parse22(self):
 table = self.trimAtRepeatedNewlines(self.body, 3)

 expectedHeadings = [
 "LIGHTS",
 "TASK LIGHTS",
 "MISC EQUIP",
 "SPACE HEATING",
 "SPACE COOLING",
 "HEAT REJECT",
 "PUMPS & AUX",
 "VENT FANS",
 "REFRIG DISPLAY",
 "HT PUMP SUPPLEM",
 "DOMEST HOT WTR",
 "EXT USAGE",
 "TOTAL"
]

 meterUnits = ['ELECTRICITY', 'NATURAL-GAS']

 WIDTH = 9
 line1 = table[0][12:]
 line2 = table[1][12:]

 for i, v in enumerate(expectedHeadings):
 combined = (line1[i * WIDTH:(i + 1) * WIDTH].strip() + ' ' + line2[i * WIDTH:(i + 1) * WIDTH].strip()).strip()
 if combined != v: print("Heading Error! Expected:", v, "Actual:", combined)

 tableInterior = table[3:-2]

 output = []
 outputRow = []

 for i, v in enumerate(tableInterior):
 if i % 2 == 0:
 outputRow.append(v[:5].strip())
 if v[5:16] not in meterUnits:
 print("Unrecognized meter units", v[5:16])
 else:
 outputRow.append(v[5:16].strip())
 output.append(outputRow)
794 else:
795 unit = v[:12].strip().lower()
796 if unit not in Energy.units():
797 print("Invalid unit in BEPS", unit)
798 outputRow.append(unit)
799 rest = v[12:]
800 for i, v in enumerate(expectedHeadings[:-1]):
801 outputRow.append(float(rest[i * WIDTH:(i + 1) * WIDTH].strip()))
802 outputRow.append(float(rest[(len(expectedHeadings) - 1) * WIDTH:].strip()))
803 output.append(outputRow)
804 outputRow = []
805
806 return output
807
808 class BEPS(Report):
809 def __init__(self, simFile):
810 reports = simFile.reports
811 self.bepsreports = self.filterReports(reports, 'BEPS')
812
813 if len(self.bepsreports) > 1:
814 print("Multiple BEPS reports")
815 self.header = self.bepsreports[0].header
816 self.body = self.bepsreports[0].body
817
818 self.areaLightsElec = None
819 self.areaLightsGas = None
820 self.equipElec = None
821 self.equipGas = None
822 self.spaceHeatElec = None
823 self.spaceHeatGas = None
824 self.spaceCoolElec = None
825 self.spaceCoolGas = None
826 self.heatRejectElec = None
827 self.heatRejectGas = None
828 self.pumpsElec = None
829 self.pumpsGas = None
830 self.fansElec = None
831 self.fansGas = None
832 self.dhwElec = None
833 self.dhwGas = None
834 self.taskLightsElec = None
835 self.taskLightsGas = None
836 self.refrigDisplayElec = None
837 self.refrigDisplayGas = None
838 self.htPumpElec = None
839 self.htPumpGas = None
840 self.extElec = None
841 self.extGas = None
842 self.elecTotal = None
843 self.gasTotal = None
844
845 if simFile.doeVersion[4:7] == '2.1':
846 self.parsed = self.parse21()
elif simFile.doeVersion[4:7] == '2.2':
 self.parsed = self.parse22()

 self.areaLightsElec = sum([Energy(row[3], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
 self.areaLightsGas = sum([Energy(row[3], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
 self.taskLightsElec = sum([Energy(row[4], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
 self.taskLightsGas = sum([Energy(row[4], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
 self.equipElec = sum([Energy(row[5], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
 self.equipGas = sum([Energy(row[5], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
 self.spaceHeatElec = sum([Energy(row[6], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
 self.spaceHeatGas = sum([Energy(row[6], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
 self.spaceCoolElec = sum([Energy(row[7], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
 self.spaceCoolGas = sum([Energy(row[7], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
 self.heatRejectElec = sum([Energy(row[8], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
 self.heatRejectGas = sum([Energy(row[8], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
 self.pumpsElec = sum([Energy(row[9], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
 self.pumpsGas = sum([Energy(row[9], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])
 self.fansElec = sum([Energy(row[10], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])
 self.fansGas = sum([Energy(row[10], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])

self.htPumpElec = sum([Energy(row[12], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])

self.htPumpGas = sum([Energy(row[12], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])

self.dhwElec = sum([Energy(row[13], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])

self.extElec = sum([Energy(row[14], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])

self.extGas = sum([Energy(row[14], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])

self.elecTotal = sum([Energy(row[15], row[2]) for row in self.parsed if row[1] == 'ELECTRICITY'])

self.gasTotal = sum([Energy(row[15], row[2]) for row in self.parsed if row[1] == 'NATURAL-GAS'])

def parse21(self):

 table = self.removeBlankLines(self.body)

 expectedHeadings = [
 (0, "ENERGY TYPE:", "Energy Type"),
 (1, "UNITS: MBTU", "UNITS: MBTU"),
 (4, "AREA LIGHTS", "Area Lights"),
 (5, "MISC EQUIPMT", "Miscellaneous Equipment"),
 (6, "SPACE HEAT", "Space Heating"),
 (7, "SPACE COOL", "Space Cooling"),
 (8, "HEAT REJECT", "Heat Rejection"),
 (9, "PUMPS & MISC", "Pumps and Miscellaneous"),
 (10, "VENT FANS", "Vent Fans"),
 (11, "DOMHOT WATER", "Domestic Hot Water"),
 (13, "TOTAL", "Total"),
]

 for i in expectedHeadings:
 if table[i[0]][:47].strip() != i[1]: print(i[2], "not found in BEPS:", ":" + table[i[0]][:47].strip() + ' vs. ' + i[1] + '"

 numberOfColumns = math.floor((len(table[0]) - 46) / 14)

 if numberOfColumns > 3:
 print("More than 3 columns in BEPU")

 output = []
 outputRow = []

 WIDTH = 14

 for column in range(numberOfColumns):
 start = 46 + WIDTH * column
 if column == numberOfColumns - 1:
 end = len(table[row[0]])
else:
 end = 46 + WIDTH * (column + 1)

 for row in expectedHeadings:
 outputRow.append(table[row[0]][start:end].strip())
 output.append(outputRow)
 outputRow = []

 if output[0][0] != 'ELECTRICITY': print("Electricity Column missing")
 if output[1][0] != 'NATURAL-GAS': print("Natural Gas Column missing")
 if numberOfColumns > 2:
 if output[2][0] != 'RECOVERED': print("Recovered Column missing")

 return output

def parse22(self):
 table = self.trimAtRepeatedNewlines(self.body, 3)

 expectedHeadings = [
 "LIGHTS",
 "TASK LIGHTS",
 "MISC EQUIP",
 "SPACE HEATING",
 "SPACE COOLING",
 "HEAT REJECT",
 "PUMPS & AUX",
 "VENT FANS",
 "REFRIG DISPLAY",
 "HT PUMP SUPPLEM",
 "DOMEST HOT WTR",
 "EXT USAGE",
 "TOTAL"
]

 meterUnits = ['"ELECTRICITY", "NATURAL-GAS"']

 WIDTH = 9
 line1 = table[0][12:]
 line2 = table[1][12:]

 for i, v in enumerate(expectedHeadings):
 combined = (line1[i * WIDTH:(i + 1) * WIDTH].strip() + ' ' + line2[i * WIDTH:(i + 1) * WIDTH].strip()).strip()
 if combined != v: print("Heading Error! Expected:" , v, "Actual:" , combined)

 tableInterior = table[3:-2]

 output = []
 outputRow = []

 for i, v in enumerate(tableInterior):
 if i % 2 == 0:
 outputRow.append(v[:5].strip())
```python
if v[5:16] not in meterUnits:
    print("Unrecognized meter units", v[5:16])
else:
    outputRow.append(v[5:16].strip())
else:
    unit = v[:12].strip().lower()
if unit not in Energy.units(): print("Invalid unit in BEPS", unit)
outputRow.append(unit)
rest = v[12:]
for i, v in enumerate(expectedHeadings[:-1]):
    outputRow.append(float(rest[i * WIDTH:(i + 1) * WIDTH].strip()))
outputRow.append(rest[(len(expectedHeadings) - 1) * WIDTH:].strip())
output.append(outputRow)
outputRow = []
return output

class ESD(Report):
    def __init__(self, simFile):
        self.simFile = simFile
        reports = simFile.reports
        self.esdreports = self.filterReports(reports, 'ES-D')
        if len(self.esdreports) > 1:
            print("Multiple ESD reports")
        self.header = self.esdreports[0].header
        self.body = self.esdreports[0].body
        self.electricityCost = None
        self.gasCost = None
        self.totalCost = None
        self.parsed = self.parseESD()
        self.totalCost = self.electricityCost + self.gasCost

def parseESD(self):
    table = self.trimAtRepeatedNewlines(self.body, 2)
    headerSchema21 = [
        ('UTILITY-RATE', 'Utility Rate Name', 0, 16),
        ('RESOURCE', 'Fuel Type', 20, 36),
        ('METERS', 'Meter Name', 40, 51),
        ('METERED ENERGY UNITS/YR', 'Metered Energy', 55, 74),
        ('TOTAL CHARGE ($)', 'Total Charge', 78, 88),
        ('VIRTUAL RATE ($/UNIT)', 'Virtual Rate', 92, 102),
        ('RATE USED ALL YEAR?', 'Rate Used All Year', 106, 115)
    ]
```
headerSchema22 = [
 ('UTILITY-RATE', 'Utility Rate Name', 0, 32),
 ('RESOURCE', 'Fuel Type', 35, 51),
 ('METERS', 'Meter Name', 54, 65),
 ('METERED ENERGY UNITS/YR', 'Metered Energy', 68, 87),
 ('TOTAL CHARGE ($)', 'Total Charge', 90, 100),
 ('VIRTUAL RATE ($/UNIT)', 'Virtual Rate', 103, 113),
 ('RATE USED ALL YEAR?', 'Rate Used All Year', 116, 125)
]

bodySchema21 = headerSchema21[:]
bodySchema21.insert(4, ('METERED ENERGY UNITS/YR', 'Metered Energy Units', 65, 74))

bodySchema22 = headerSchema22[:]
bodySchema22.insert(4, ('METERED ENERGY UNITS/YR', 'Metered Energy Units', 78, 87))

if self.simFile.doeVersion[4:7] == '2.1':
 self.headerSchema, self.bodySchema = headerSchema21, bodySchema21
elif self.simFile.doeVersion[4:7] == '2.2':
 self.headerSchema, self.bodySchema = headerSchema22, bodySchema22

for row in self.headerSchema:
 combined = ','.join([i[row[2]:row[3]].strip() for i in table[:3]]).strip()
 if combined != row[0]: print("ESD Header Schema Error! Expected: ", row[0], " Actual:", combined)

output = []
outputRow = []
meterUnits = ['ELECTRICITY', 'NATURAL-GAS']
for row in table[4:-2]:
 for i, v in enumerate(self.bodySchema):
 value = row[v[2]:v[3]].strip()
 if i in [3, 5, 6]:
 value = float(value)
 if i == 1:
 if value not in meterUnits: print("ESD: Unrecognized meter units", row[1])
 outputRow.append(value)
 output.append(outputRow)
 outputRow = []

return output
def equest(p):
 sim = SimFile(p)
 return {
 'LV-B': LVB(sim),
 'BEPS': BEPS(sim),
1097 'ES-D': ESD(sim)
1098 }
```python
import openpyxl

def leed2009(p, output_filepath):
    wb = openpyxl.load_workbook('templates/leed2009.xlsx')
    ws = wb.active

    # ws['H55'] = 'text1'
    # ws['H56'] = 'text2'
    # ws['H57'] = 'text3'
    # ws['H58'] = 'text4'
    # ws['H59'] = 'text5'
    ws['I49'] = 'Natural gas'
    ws['I50'] = 'Electric'
    ws['I53'] = 'Natural gas'
    # ws['I55'] = 'Natural gas'
    # ws['I56'] = 'Natural gas'
    # ws['I57'] = 'Natural gas'
    # ws['I58'] = 'Natural gas'
    # ws['I59'] = 'Natural gas'

    ws['J48'] = p.prop_area_lights_elec.get('mj')
    ws['J49'] = p.prop_space_heat_gas.get('mj')
    ws['J50'] = p.prop_space_cool_elec.get('mj')
    ws['J51'] = p.prop_pumps_elec.get('mj')
    ws['J52'] = p.prop_vent_fans_elec.get('mj')
    ws['J53'] = p.prop_dhw_gas.get('mj')
    ws['J54'] = p.prop_plugs_elec.get('mj')
    # ws['J55'] = 1008
    # ws['J56'] = 1009
    # ws['J57'] = 1010
    # ws['J58'] = 1011
    # ws['J59'] = 1012

    ws['I65'] = p.prop_elec_total.get('mj')
    ws['I66'] = p.prop_gas_total.get('mj')
    # ws['I67'] = 1027
    ws['J65'] = p.prop_cost_elec
    ws['J66'] = p.prop_cost_gas
    # ws['J67'] = 1030

    if p.reference:
        ws['M48'] = p.ref_area_lights_elec.get('mj')
        ws['M49'] = p.ref_space_heat_gas.get('mj')
        ws['M50'] = p.ref_space_cool_elec.get('mj')
        ws['M51'] = p.ref_pumps_elec.get('mj')
        ws['M52'] = p.ref_vent_fans_elec.get('mj')
        ws['M53'] = p.ref_dhw_gas.get('mj')
        ws['M54'] = p.ref_plugs_elec.get('mj')
        # ws['M55'] = 1020
        # ws['M56'] = 1021
        # ws['M57'] = 1022
        # ws['M58'] = 1023
        # ws['M59'] = 1024

        ws['L65'] = p.ref_elec_total.get('mj')
```

ws['L66'] = p.ref_gas_total.get('mj')
ws['L67'] = 1033
ws['M65'] = p.ref_cost_elec
ws['M66'] = p.ref_cost_gas
ws['M67'] = 1036
wb.save(output_filepath)
import os, os.path, datetime, openpyxl
import energyplus, ies, equest
import tgs, obc, leed2009, sbd
from units import Energy, Mass

PWB = '4_setup.xlsx'
PF = '1_projects'
OF = '2_outputs'

class Project:
 def __init__(self, projectName=None):
 self.projectName = projectName
 self.proposed = None
 self.reference = None
 self.projectAddress = None
 self.spaNumber = None
 self.architectName = None
 self.architectPhone = None
 self.architectEmail = None
 self.architectTitle = None
 self.architectCompany = None
 self.modellerName = None
 self.modellerPhone = None
 self.modellerEmail = None
 self.modellerTitle = None
 self.modellerCompany = None
 self.buildingType = None
 self.buildingArea = None
 self.codeCompliancePath = None

 self.prop_area_lights_elec = None
 self.prop_int_lights_elec = None
 self.prop_misc_elec = None
 self.prop_space_heat_elec = None
 self.prop_space_cool_elec = None
 self.prop_vent_fans_elec = None
 self.prop_dhw_elec = None
 self.prop_pumps_elec = None
 self.prop_plugs_elec = None
 self.prop_area_lights_gas = None
 self.prop_int_lights_gas = None
 self.prop_misc_gas = None
 self.prop_space_heat_gas = None
 self.prop_space_cool_gas = None
 self.prop_vent_fans_gas = None
 self.prop_dhw_gas = None
 self.prop_pumps_gas = None
 self.prop_plugs_gas = None
 self.prop_area_lights_total = None
 self.prop_int_lights_total = None
 self.prop_misc_total = None
 self.prop_space_heat_total = None
 self.prop_space_cool_total = None
 self.prop_vent_fans_total = None
 self.prop_dhw_total = None
self.prop_pumps_total = None
self.prop_plugs_total = None
self.prop_elec_total = None
self.prop_gas_total = None
self.prop_energy_total = None
self.prop_carbon_elec = None
self.prop_carbon_gas = None
self.prop_carbon_total = None
self.prop_cost_elec = None
self.prop_cost_gas = None
self.prop_cost_total = None

self.ref_area_lights_elec = None
self.ref_int_lights_elec = None
self.ref_misc_elec = None
self.ref_space_heat_elec = None
self.ref_space_cool_elec = None
self.ref_vent_fans_elec = None
self.ref_dhw_elec = None
self.ref_pumps_elec = None
self.ref_plugs_elec = None
self.ref_area_lights_gas = None
self.ref_int_lights_gas = None
self.ref_misc_gas = None
self.ref_space_heat_gas = None
self.ref_space_cool_gas = None
self.ref_vent_fans_gas = None
self.ref_dhw_gas = None
self.ref_pumps_gas = None
self.ref_plugs_gas = None
self.ref_area_lights_total = None
self.ref_int_lights_total = None
self.ref_misc_total = None
self.ref_space_heat_total = None
self.ref_space_cool_total = None
self.ref_vent_fans_total = None
self.ref_dhw_total = None
self.ref_pumps_total = None
self.ref_plugs_total = None
self.ref_elec_total = None
self.ref_gas_total = None
self.ref_energy_total = None
self.ref_carbon_elec = None
self.ref_carbon_gas = None
self.ref_carbon_total = None
self.ref_cost_elec = None
self.ref_cost_gas = None
self.ref_cost_total = None

def addName(self, name):
 self.projectName = name

def addProposed(self, modelPath):
 if modelPath:
 self.proposed = Model(modelPath)
if self.proposed.type == 'IES':
 iesParsed = ies.iesParse(self.proposed.filepath)
 self.addReference(modelPath)
 self.buildingArea = iesParsed['spaceSummary']['Totals']['total']
 self.prop_area_lights_elec = Energy(sum([light['proposed'].get() for light in lights if light['type'] == 'Electricity']))
 self.prop_area_lights_gas = Energy(sum([light['proposed'].get() for light in lights if light['type'] == 'Gas']))
 self.prop_area_lights_total = self.prop_area_lights_elec + self.prop_area_lights_gas

 self.prop_int_lights_elec = Energy(sum([light['proposed'].get() for light in intLights if light['type'] == 'Electricity']))
 self.prop_int_lights_gas = Energy(sum([light['proposed'].get() for light in intLights if light['type'] == 'Gas']))
 self.prop_int_lights_total = self.prop_int_lights_elec + self.prop_int_lights_gas

 dhws = [iesParsed['prmEnergy'][dhw] for dhw in ['Service Water Heating (Fossil Fuel)', 'Service Water Heating']]
 self.prop_dhw_elec = Energy(sum([dhw['proposed'].get() for dhw in dhws if dhw['type'] == 'Electricity']))
 self.prop_dhw_gas = Energy(sum([dhw['proposed'].get() for dhw in dhws if dhw['type'] == 'Gas']))
 self.prop_dhw_total = self.prop_dhw_elec + self.prop_dhw_gas

 coolings = [iesParsed['prmEnergy'][cooling] for cooling in ['Space Cooling', 'Heat Rejection']]
 self.prop_space_cool_elec = Energy(sum([cooling['proposed'].get() for cooling in coolings if cooling['type'] == 'Electricity']))
 self.prop_space_cool_gas = Energy(sum([cooling['proposed'].get() for cooling in coolings if cooling['type'] == 'Gas']))
 self.prop_space_cool_total = self.prop_space_cool_elec + self.prop_space_cool_gas

 heatings = [iesParsed['prmEnergy'][heating] for heating in ['Space Heating', 'Space Heating (Fossil Fuel)']]
 self.prop_space_heat_elec = Energy(sum([heating['proposed'].get() for heating in heatings if heating['type'] == 'Electricity']))
 self.prop_space_heat_gas = Energy(sum([heating['proposed'].get() for heating in heatings if heating['type'] == 'Gas']))
 self.prop_space_heat_total = self.prop_space_heat_elec + self.prop_space_heat_gas
prop_space_heat_gas

miscs = [iesParsed['prmEnergy'][misc] for misc in ['Receptacle Equipment', 'Refrigeration', 'Data Centre Equipment', 'Elevators Escalators']]

self.prop_misc_elec = Energy(
 sum([misc['proposed'].get() for misc in miscs if misc['type'] == 'Electricity']))

self.prop_misc_gas = Energy(
 sum([misc['proposed'].get() for misc in miscs if misc['type'] == 'Gas']))

fans = [iesParsed['prmEnergy'][fan] for fan in ['Fans Interior', 'Fans Parking Garage']]

self.prop_vent_fans_elec = Energy(
 sum([fan['proposed'].get() for fan in fans if fan['type'] == 'Electricity']))

self.prop_vent_fans_gas = Energy(
 sum([fan['proposed'].get() for fan in fans if fan['type'] == 'Gas']))

prop_vent_fans_total = self.prop_vent_fans_elec + self.prop_vent_fans_gas

self.prop_elec_total = iesParsed['economicsEnergy']['Electricity']['proposed']

self.prop_gas_total = iesParsed['economicsEnergy']['Gas']['proposed']

self.prop_energy_total = iesParsed['economicsEnergy']['Subtotal (Model Outputs)':']['proposed']

self.prop_carbon_elec = Mass(self.prop_elec_total.get('kwh')*50, 'g')

self.prop_carbon_gas = Mass(self.prop_gas_total.get('kwh')*182, 'g')

self.prop_carbon_total = self.prop_carbon_elec + self.prop_carbon_gas

elif self.proposed.type == 'eQuest':

equestParsed = equest.equest(modelPath)
beps = equestParsed['BEPS']
esd = equestParsed['ES-D']
self.buildingArea = equestParsed['LV-B'].netArea

self.prop_area_lights_elec = beps.areaLightsElec + beps.taskLightsElec
self.prop_int_lights_elec = beps.areaLightsElec + beps.taskLightsElec
self.prop_misc_elec = beps.equipElec
self.prop_space_heat_elec = beps.spaceHeatElec
self.prop_space_cool_elec = beps.spaceCoolElec + beps.heatRejectElec
self.prop_vent_fans_elec = beps.fansElec
self.prop_dhw_elec = beps.dhwElec
self.prop_pumps_elec = beps.pumpsElec
self.prop_plugs_elec = beps.equipElec

self.prop_area_lights_gas = beps.areaLightsGas + beps.taskLightsGas
self.prop_int_lights_gas = beps.areaLightsGas + beps.taskLightsGas
self.prop_misc_gas = beps.equipGas
self.prop_space_heat_gas = beps.spaceHeatGas
self.prop_space_cool_gas = beps.spaceCoolGas + beps.heatRejectGas
self.prop_vent_fans_gas = beps.fansGas
self.prop_dhw_gas = beps.dhwGas
self.prop_pumps_gas = beps.pumpsGas
self.prop_plugs_gas = beps.equipGas
self.prop_area_lights_total = self.prop_area_lights_elec + self.prop_area_lights_gas
self.prop_int_lights_total = self.prop_int_lights_elec + self.prop_int_lights_gas
self.prop_misc_total = self.prop_misc_elec + self.prop_misc_gas
self.prop_space_heat_total = self.prop_space_heat_elec + self.prop_space_heat_gas
self.prop_space_cool_total = self.prop_space_cool_elec + self.prop_space_cool_gas
self.prop_vent_fans_total = self.prop_vent_fans_elec + self.prop_vent_fans_gas
self.prop_dhw_total = self.prop_dhw_elec + self.prop_dhw_gas
self.prop_pumps_total = self.prop_pumps_elec + self.prop_pumps_gas
self.prop_plugs_total = self.prop_plugs_elec + self.prop_plugs_gas
self.prop_elec_total = beps.elecTotal
self.prop_gas_total = beps.gasTotal
self.prop_energy_total = self.prop_elec_total + self.prop_gas_total
self.prop_carbon_elec = Mass(self.prop_elec_total.get('kwh')*50, 'g')
self.prop_carbon_gas = Mass(self.prop_elec_total.get('kwh')*50, 'g')
self.prop_carbon_total = self.prop_carbon_elec + self.prop_carbon_gas
self.prop_cost_elec = esd.electricityCost
self.prop_cost_gas = esd.gasCost
self.prop_cost_total = esd.totalCost

eif self.proposed.type == 'energyPlus':
 pass

def addReference(self, modelPath):
 if modelPath:
 self.reference = Model(modelPath)

 if self.reference.type == 'IES':
 iesParsed = ies.iesParse(self.reference.filepath)

 self.ref_area_lights_elec = Energy(sum([light['reference'].get() for light in lights if light['type'] == 'Electricity']))

 self.ref_area_lights_gas = Energy(sum([light['reference'].get() for light in lights if light['type'] == 'Gas']))

 self.ref_area_lights_total = self.ref_area_lights_elec + self.ref_area_lights_gas

 self.ref_int_lights_elec = Energy(sum([light['reference'].get() for light in lights if light['type'] == 'Electricity']))

 self.ref_int_lights_gas = Energy(sum([light['reference'].get() for light in lights if light['type'] == 'Gas']))

 self.ref_int_lights_total = self.ref_int_lights_elec + self.ref_int_lights_gas

 dhws = [iesParsed['prmEnergy'][dhw] for dw in ['Service Water Heating (Fossil Fuel)', 'Service Water Heating']]

 self.ref_dhw_elec = Energy(sum([dhw['reference'].get() for dw in dhws if dw['type'] == 'Electricity']))

 self.ref_dhw_gas = Energy(sum([dhw['reference'].get() for dw in dhws if dw['type'] == 'Gas']))

 self.ref_dhw_total = self.ref_dhw_elec + self.ref_dhw_gas

 self.ref_pumps_total = self.ref_dhw_elec + self.ref_dhw_gas

 self.ref_plugs_total = self.ref_dhw_elec + self.ref_dhw_gas

 self.ref_elec_total = beps.elecTotal

 self.ref_gas_total = beps.gasTotal

 self.ref_energy_total = self.ref_elec_total + self.ref_gas_total

 self.ref_carbon_elec = Mass(self.ref_elec_total.get('kwh')*50, 'g')

 self.ref_carbon_gas = Mass(self.ref_elec_total.get('kwh')*50, 'g')

 self.ref_carbon_total = self.ref_carbon_elec + self.ref_carbon_gas

 self.ref_cost_elec = esd.electricityCost

 self.ref_cost_gas = esd.gasCost

 self.ref_cost_total = esd.totalCost
self.ref_dhw_elec = Energy(sum([dhw['reference'].get() for dhw in dhws if dhw['type'] == 'Electricity']))
self.ref_dhw_gas = Energy(sum([dhw['reference'].get() for dhw in dhws if dhw['type'] == 'Gas']))
self.ref_dhw_total = self.ref_dhw_elec + self.ref_dhw_gas
coolings = [iesParsed['prmEnergy'][cooling] for cooling in ['Space Cooling', 'Heat Rejection']]
self.ref_space_cool_elec = Energy(sum([cooling['reference'].get() for cooling in coolings if cooling['type'] == 'Electricity']))
self.ref_space_cool_gas = Energy(sum([cooling['reference'].get() for cooling in coolings if cooling['type'] == 'Gas']))
self.ref_space_cool_total = self.ref_space_cool_elec + self.ref_space_cool_gas
heatings = [iesParsed['prmEnergy'][heating] for heating in ['Space Heating', 'Space Heating (Fossil Fuel)']]
self.ref_space_heat_elec = Energy(sum([heating['reference'].get() for heating in heatings if heating['type'] == 'Electricity']))
self.ref_space_heat_gas = Energy(sum([heating['reference'].get() for heating in heatings if heating['type'] == 'Gas']))
self.ref_space_heat_total = self.ref_space_heat_elec + self.ref_space_heat_gas
miscs = [iesParsed['prmEnergy'][misc] for misc in ['Receptacle Equipment', 'Refrigeration', 'Data Centre Equipment', 'Elevators Escalators']]
self.ref_misc_elec = Energy(sum([misc['reference'].get() for misc in miscs if misc['type'] == 'Electricity']))
self.ref_misc_gas = Energy(sum([misc['reference'].get() for misc in miscs if misc['type'] == 'Gas']))
self.ref_misc_total = self.ref_misc_elec + self.ref_misc_gas
fans = [iesParsed['prmEnergy'][fan] for fan in ['Fans Interior', 'Fans Parking Garage']]
self.ref_vent_fans_elec = Energy(sum([fan['reference'].get() for fan in fans if fan['type'] == 'Electricity']))
self.ref_vent_fans_gas = Energy(sum([fan['reference'].get() for fan in fans if fan['type'] == 'Gas']))
self.ref_vent_fans_total = self.ref_vent_fans_elec + self.ref_vent_fans_gas
self.ref_elec_total = iesParsed['economicsEnergy']['Electricity']['reference']
self.ref_gas_total = iesParsed['economicsEnergy']['Gas']['reference']
self.ref_energy_total = iesParsed['economicsEnergy']['Subtotal (Model Outputs)']['reference']
self.ref_carbon_elec = Mass(self.ref_elec_total.get('kwh')*50,'g')
self.ref_carbon_gas = Mass(self.ref_gas_total.get('kwh')*182, 'g')
self.ref_carbon_total = self.ref_carbon_elec + self.ref_carbon_gas

elif self.reference.type == 'eQuest':
equestParsed = equest.equest(modelPath)
esd = equestParsed['ES-D']
beps = equestParsed['BEPS']

self.ref_area_lights_elec = beps.areaLightsElec + beps.taskLightsElec
self.ref_int_lights_elec = beps.areaLightsElec + beps.taskLightsElec
self.ref_misc_elec = beps.equipElec
self.ref_space_heat_elec = beps.spaceHeatElec
self.ref_space_cool_elec = beps.spaceCoolElec + beps.heatRejectElec
self.ref_vent_fans_elec = beps.fansElec
self.ref_dhw_elec = beps.dhwElec
self.ref_pumps_elec = beps.pumpsElec
self.ref_plugs_elec = beps.equipElec
self.ref_area_lights_gas = beps.areaLightsGas + beps.taskLightsGas
self.ref_int_lights_gas = beps.areaLightsGas + beps.taskLightsGas
self.ref_misc_gas = beps.equipGas
self.ref_space_heat_gas = beps.spaceHeatGas
self.ref_space_cool_gas = beps.spaceCoolGas + beps.heatRejectGas
self.ref_vent_fans_gas = beps.fansGas
self.ref_dhw_gas = beps.dhwGas
self.ref_pumps_gas = beps.pumpsGas
self.ref_plugs_gas = beps.equipGas

self.ref_area_lights_total = self.ref_area_lights_elec + self.
ref_int_lights_total = self.ref_int_lights_elec + self.
ref_misc_total = self.ref_misc_elec + self.ref_misc_gas
ref_space_heat_total = self.ref_space_heat_elec + self.
ref_space_cool_total = self.ref_space_cool_elec + self.
ref_vent_fans_total = self.ref_vent_fans_elec + self.

ref_energy_total = self.ref_energy_total + self.
self.ref_elec_total = beps.elecTotal
self.ref_gas_total = beps.gasTotal
self.ref_energy_total = self.ref_elec_total + self.ref_gas_total
self.ref_carbon_elec = Mass(self.ref_elec_total.get('kwh')*50, 'g')
selself.ref_carbon_gas = Mass(self.ref_gas_total.get('kwh')*50, 'g')
self.ref_carbon_total = self.ref_carbon_elec + self.ref_carbon_gas
self.ref_cost_elec = esd.electricityCost
self.ref_cost_gas = esd.gasCost
self.ref_cost_total = esd.totalCost

def addByPWB(self,pd):
 self.projectName = pd['Project Name']
 self.addProposed(os.path.join(PF,pd['Proposed File']))
class Model:
 def __init__(self, filepath):
 self.filepath = filepath
 self.type = None

 if os.path.splitext(filepath)[1].lower() == '.sim':
 self.type = 'eQuest'
 elif ies.isIES(filepath):
 self.type = 'IES'

 def readPWB(pwb):
 projects = []

 if not os.path.isfile(PWB):
 print('Project workbook: "' + PWB + '" not found')
 return projects

 wb = openpyxl.load_workbook(PWB)
 ws = wb.active

 pwbProjects = []
 pwbProjectValues = {}

 for i, column in enumerate(ws.columns):
 if i == 0:
 headings = []
 for row in column:
 headings.append(row.value)
 else:
 for i2, row in enumerate(column):
 pwbProjectValues[headings[i2]] = row.value
 pwbProjects.append(pwbProjectValues)
 pwbProjectValues = {}

 for entry in pwbProjects:
 project = Project()
```python
    project.addByPWB(entry)
    projects.append(project)

    return projects

def scanPF(pf):
    fileNames = []
    projectNames = {}
    projects = []

    for entry in os.listdir(pf):
        filepath = os.path.join(pf, entry)
        if os.path.isfile(filepath):
            fileNames.append(entry)

    for fileName in fileNames:
        root = os.path.splitext(fileName)[0]
        if root.endswith('_prop'):
            withoutSuffix = root[:-5]
            if withoutSuffix not in projectNames.keys():
                projectNames[withoutSuffix] = {}
                projectNames[withoutSuffix]['proposed'] = os.path.join(pf, fileName)
        elif root.endswith('_ref'):
            withoutSuffix = root[:-4]
            if withoutSuffix not in projectNames.keys():
                projectNames[withoutSuffix] = {}
                projectNames[withoutSuffix]['reference'] = os.path.join(pf, fileName)
        else:
            withoutSuffix = root
            if withoutSuffix not in projectNames.keys():
                projectNames[withoutSuffix] = {}
                projectNames[withoutSuffix]['untagged'] = os.path.join(pf, fileName)

    for project in projectNames.keys():
        if len(projectNames[project].keys()) == 3:
            print('3 files provided for the same project')
        else:
            newProject = Project()
            if 'proposed' in projectNames[project].keys():
                newProject.addName(project)
                newProject.addProposed(projectNames[project]['proposed'])
                if 'reference' in projectNames[project].keys():
                    newProject.addReference(projectNames[project]['reference'])
            elif 'untagged' in projectNames[project].keys():
                newProject.addName(project)
                newProject.addProposed(projectNames[project]['untagged'])
                if 'reference' in projectNames[project].keys():
                    newProject.addReference(projectNames[project]['reference'])
            else:
                newProject.addName(project)
                newProject.addProposed(projectNames[project]['reference'])
            projects.append(newProject)

    return projects
```
445 def joinPWBandPF(pwb, pf):
446 return pwb + pf
447
448
449 def harvest():
450 runTime = datetime.datetime.now().strftime('%Y%m%d %H%M%S')
451 outFolderBase = os.path.join(OF, runTime)
452
453 # open project setup workbook
454 # projectsInPWB = readPWB(PWB)
455 # scan project in project folder
456 projectsInPF = scanPF(PF)
457
458 # join project lists
459 # projects = joinPWBandPF(projectsInPWB, projectsInPF)
460 projects = projectsInPF
461
462 # return projects
463
464 # pass project details to output modules
465
466 os.mkdir(outFolderBase)
467 # projects = projects[9:15]
468 # projects = projects[:2]
469 for project in projects:
470 print('Creating output for:', project.projectName)
471 outFolder = os.path.join(outFolderBase, project.projectName)
472 os.mkdir(outFolder)
473 tgs.tgs(project, os.path.join(outFolder, 'tgs.pdf'))
474 obc.obc(project, os.path.join(outFolder, 'obc.pdf'))
475 sbd.sbd(project, os.path.join(outFolder, 'sbd.xlsx'))
476 leed2009.leed2009(project, os.path.join(outFolder, 'leed2009.xlsx'))
477
478 print('Output creation complete')
479
480 return projects
481
482
483 if __name__ == '__main__':
484 projects = harvest()
485 # projects = scanPF(PF)
486 # test = equest.equest(projects[0].proposed.filepath)
APPENDIX D:
SAMPLE SUBMISSION REPORTS FROM TEST RUNS
LEED Canada for New Construction and Major Renovations 2009

EA Prerequisite 2: MINIMUM ENERGY PERFORMANCE &
EA Credit 1: OPTIMIZE ENERGY PERFORMANCE

Please select only ONE of the following options:

Whole Building Energy Simulation

Prescriptive Compliance Path

 Less than 1,860 square metres (20,000 square feet) with office occupancy.
 Less than 1,860 square metres (20,000 square feet) with retail occupancy.
 Less than 4,645 square metres (50,000 square feet) with warehouse or self-storage occupancy.
 Less than 18,600 square metres (200,000 square feet) with K-12 school occupancy.
- OPTION 3: Advanced Buildings™ Core Performance™ Guide
 Less than 9,290 square metres (100,000 square feet).

Special Circumstances or Alternative Compliance Path

- OPTION 1: Whole Building Energy Simulation
 (1 to 19 Points)

PATH

Complete the following tables to support the selected option:

Table: Energy Cost and Consumption by Energy Type

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lighting</td>
<td>Electric</td>
<td>678,401</td>
<td>- 944,697</td>
<td>- 28%</td>
</tr>
<tr>
<td>Space Heating</td>
<td>Natural gas</td>
<td>7,669,306</td>
<td>- 13,380,218</td>
<td>- 43%</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>Electric</td>
<td>299,108</td>
<td>- 527,211</td>
<td>- 43%</td>
</tr>
<tr>
<td>Pumps</td>
<td>Electric</td>
<td>171,341</td>
<td>- 497,037</td>
<td>- 66%</td>
</tr>
<tr>
<td>Fans</td>
<td>Electric</td>
<td>2,253,599</td>
<td>- 2,714,764</td>
<td>- 17%</td>
</tr>
<tr>
<td>Service Water Heating</td>
<td>Natural gas</td>
<td>191,704</td>
<td>- 248,677</td>
<td>- 23%</td>
</tr>
<tr>
<td>Plug Loads</td>
<td>Electric</td>
<td>285,182</td>
<td>- 285,182</td>
<td>- 0%</td>
</tr>
<tr>
<td>Other:</td>
<td>Enter End Use Select a fuel</td>
<td>0 - 0 - 0</td>
<td>0 - 0 - 0</td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td>Enter End Use Select a fuel</td>
<td>0 - 0 - 0</td>
<td>0 - 0 - 0</td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td>Enter End Use Select a fuel</td>
<td>0 - 0 - 0</td>
<td>0 - 0 - 0</td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td>Enter End Use Select a fuel</td>
<td>0 - 0 - 0</td>
<td>0 - 0 - 0</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>11,548,641</td>
<td>0.0</td>
<td>18,597,786</td>
<td>38%</td>
</tr>
</tbody>
</table>

Total Energy Summary

<table>
<thead>
<tr>
<th>Proposed Building Energy Cost</th>
<th>Reference Building Energy Cost</th>
<th>Percent Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>3,687,631</td>
<td>$116,038</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>7,861,010</td>
<td>$12,473</td>
</tr>
<tr>
<td>Oil / Other Fuels</td>
<td>0</td>
<td>$0</td>
</tr>
<tr>
<td>Total</td>
<td>11,548,641</td>
<td>$128,531</td>
</tr>
</tbody>
</table>

Subtotal Energy Costs

<table>
<thead>
<tr>
<th>Subtotal Energy Costs</th>
<th>Renewable</th>
<th>Energy Credit</th>
<th>Percent Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>11,548,641</td>
<td>Select a fuel</td>
<td>Select a fuel</td>
<td>100 x (ECB' $ - DEC' $ + REC' $)/ECB' $ = 27%</td>
</tr>
</tbody>
</table>

Points Awarded

0

Declare that:

- The project complies with the mandatory provisions of MNECB 1997 / ASHRAE 90.1-2007.
Provide the following to support the selected option:

- Proof of the installation of an energy meter(s) that measures all energy use, for both building and site energy uses, as well as proof of calibration of any meters owned by the building owner, management organization or tenant.

Provide ONE the following to support the selected option:

- A compliance report from an acceptable independent third party agency (such as Natural Resources Canada) and a modelling report that details any changes between the compliance report and the LEED Canada Energy Modelling Rules (e.g., changes made for LEED compliance).
- A compliance report from an acceptable independent third party (individual on CaGBC’s Experienced Modellers List), and signed compliance documentation for MNECB 1997 / ASHRAE 90.1-2007 mandatory provisions.

Required elements of a compliant modelling report are outlined in the Guidance for Energy Modelling Compliance Documentation in LEED Canada (released 2013).

OPTION 2: Prescriptive Compliance Path (1 Point)

PATH

Provide the following to support the selected option:

- Proof of the installation of an energy meter(s) that measures all energy use, for both building and site energy uses, as well as proof of calibration of any meters owned by the building owner, management organization or tenant.
- A compliance report from acceptable independent third party (individual on CaGBC’s Experienced Modellers List).

NOTE: Individuals on CaGBC’s Experienced Modellers List qualify to conduct their own reports and do not require a third party review.

OPTION 3: Prescriptive Compliance Path: Advanced Buildings™ Core Performance™ Guide (1 to 3 Points)

Declare that:

- Project complies with Section 1: Design Process Strategies.
- Project complies with Section 2: Core Performance Requirements.

Indicate the qualifying Section 3: Enhanced Performance strategies that were implemented (1 point for every 3 strategies):

- Daylighting and controls
- Additional lighting power reductions
- Plug loads, appliance efficiency
- Supply air temperature reset (VAV)
- Indirect evaporative cooling
- Heat recovery
- Premium economizer performance
- Variable speed control
- Demand-responsive buildings (peak power reduction)
- On-site supply of renewable energy
- Fault detection and diagnostics

Provide the following to support the selected option:

- Proof of the installation of an energy meter(s) that measures all energy use, for both building and site energy uses, as well as proof of calibration of any meters owned by the building owner, management organization or tenant.
- A compliance report from acceptable independent third party (individual on CaGBC’s Experienced Modellers List).

NOTE: Individuals on CaGBC’s Experienced Modellers List qualify to conduct their own reports and do not require a third party review.

Special Circumstances or Alternative Compliance Path

Special circumstances preclude documentation of credit compliance with the submittal requirements outlined in this form or the project team is using an alternative compliance path in lieu of standard submittal paths.

Provide the following to support the selected option:

- A narrative describing the special circumstances or alternative compliance path and any supporting alternate documentation.

(The narrative must include justification that the credit intent and requirements are met and reference the alternate documentation provided. Non-standard documentation will be considered upon its merits.)

Credit Interpretation Request (CIR) applied to credit:

EA Prerequisite 2: Minimum Energy Performance

<table>
<thead>
<tr>
<th>Option</th>
<th>Prerequisite Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTION 1: Whole Building Energy Simulation:</td>
<td>NO</td>
</tr>
<tr>
<td>OPTION 2: Prescriptive Compliance Path:</td>
<td>NO</td>
</tr>
<tr>
<td>OPTION 3: Prescriptive Compliance Path:</td>
<td>NO</td>
</tr>
<tr>
<td>Advanced Buildings™ Core Performance™ Guide</td>
<td></td>
</tr>
<tr>
<td>Special Circumstances or Alternative Compliance Path</td>
<td>NO</td>
</tr>
</tbody>
</table>

EA Credit 1: Optimize Energy Performance

<table>
<thead>
<tr>
<th>Option</th>
<th>Points Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPTION 1: Whole Building Energy Simulation: (1 to 19 points)</td>
<td>0</td>
</tr>
<tr>
<td>OPTION 2: Prescriptive Compliance Path: (1 point)</td>
<td>0</td>
</tr>
<tr>
<td>OPTION 3: Prescriptive Compliance Path: Advanced Buildings™ Core Performance™ Guide (1 to 3 points)</td>
<td>0</td>
</tr>
<tr>
<td>Special Circumstances or Alternative Compliance Path select option</td>
<td>0</td>
</tr>
</tbody>
</table>
The signature below constitutes a declaration that the project meets the credit intent and the requirements of the option selected above and that the submitted documents accurately represent the project.

Name: 0
Organization: 0
Role in project: Mechanical Engineer
Signature:
Date:
OBC SB-10 COMPLIANCE
(1) EXCEED MNECB BY NOT LESS THAN ≤5%
FORM A

Please select which of the two options pursued for compliance:

1. **PROPOSED BUILDING IS SHOWN TO CONSUME AT LEAST 35% LESS ENERGY (GJ or kWh) ANNUALLY THAN THE MNECB REFERENCE BUILDING.**
 ENERGY CONSUMPTION VALUES ARE DETERMINED ACCORDING TO THE MODELLING PROCEDURES IDENTIFIED IN PART 8 OF THE MNECB.
 □ YES

2. **PROPOSED BUILDING IS SHOWN TO CONSUME AT LEAST 17.5% LESS ENERGY (GJ or kWh) ANNUALLY THAN THE ASHRAE 90.1-2010 REFERENCE BUILDING.**
 ENERGY CONSUMPTION VALUES ARE DETERMINED ACCORDING TO THE MODELLING PROCEDURES OUTLINED IN CHAPTER 11 OF ASHRAE 90.1-2010.
 □ YES

Project: Modeller Name:

<table>
<thead>
<tr>
<th>Occurrences</th>
<th>Floor Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Assembly</td>
<td></td>
</tr>
<tr>
<td>☐ Health/Institutional</td>
<td></td>
</tr>
<tr>
<td>☐ Hotel/Motel</td>
<td></td>
</tr>
<tr>
<td>☐ Light Manufacturing</td>
<td></td>
</tr>
<tr>
<td>☐ Multifamily</td>
<td></td>
</tr>
<tr>
<td>☐ Office</td>
<td></td>
</tr>
<tr>
<td>☐ Restaurant</td>
<td></td>
</tr>
<tr>
<td>☐ Retail</td>
<td></td>
</tr>
<tr>
<td>☐ School</td>
<td></td>
</tr>
<tr>
<td>☐ Warehouse</td>
<td></td>
</tr>
<tr>
<td>☐ Other</td>
<td></td>
</tr>
</tbody>
</table>

| Total | |

Annual Energy Summary

<table>
<thead>
<tr>
<th>Annual Consumption Summary</th>
<th>Reference Building Energy</th>
<th>Proposed Building Energy</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Heating</td>
<td>3,716,727</td>
<td>2,130,363</td>
<td>kWh</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>146,448</td>
<td>83,086</td>
<td>kWh</td>
</tr>
<tr>
<td>HVAC Auxiliary</td>
<td>754,101</td>
<td>626,000</td>
<td>kWh</td>
</tr>
<tr>
<td>Misc. Electrical</td>
<td>79,217</td>
<td>79,217</td>
<td>kWh</td>
</tr>
<tr>
<td>Service Hot Water</td>
<td>69,077</td>
<td>53,251</td>
<td>kWh</td>
</tr>
<tr>
<td>Interior Lighting</td>
<td>262,416</td>
<td>188,445</td>
<td>kWh</td>
</tr>
</tbody>
</table>

| Other | | | |
| Other | | | |

| Total Annual Energy | 5,166,081 | > 3,207,956 | kWh |

| Percentage less energy used by proposed building: | **37.9%** |

Reference Building Energy and Proposed Building Energy Consumptions are calculated by:

- Please specify modelling software:

HVAC System Descriptions

<table>
<thead>
<tr>
<th>Reference Building Design</th>
</tr>
</thead>
</table>

| Proposed Building Design |

| Energy Efficiency Features in Proposed Building Design |

The reference building and proposed building design are modelled in accordance with the requirements of the SB-10 and the applicable standard specified above
□ Yes

The information submitted above is accurate to the best of my knowledge.

Signature:
Name/Title:

Notes:
(1) A full modelling report is required to be submitted.

(2) Explain major energy saving features utilized to achieve modelled savings.
ASHRAE 90.1-2010 & SB-10 ENERGY COST BUDGET (ECB) COMPLIANCE REPORT

Project Information

<table>
<thead>
<tr>
<th>Occupancies</th>
<th>Floor Area</th>
<th>Annual Consumption Summary</th>
<th>Reference Building Energy</th>
<th>Proposed Building Energy</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Assembly</td>
<td></td>
<td>Space Heating: 3,716,727 kWh</td>
<td>2,130,363 kWh</td>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>□ Health/Institutional</td>
<td></td>
<td>Space Cooling: 146,448 kWh</td>
<td>83,086 kWh</td>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>□ Hotel/Motel</td>
<td></td>
<td>HVAC Auxiliary: 754,101 kWh</td>
<td>626,000 kWh</td>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>□ Light Manufacturing</td>
<td></td>
<td>Misc. Electrical: 79,217 kWh</td>
<td>79,217 kWh</td>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>□ Multifamily</td>
<td></td>
<td>Service Hot Water: 69,077 kWh</td>
<td>53,251 kWh</td>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>□ Office</td>
<td></td>
<td>Interior Lighting: 262,416 kWh</td>
<td>188,445 kWh</td>
<td></td>
<td>kWh</td>
</tr>
<tr>
<td>□ Restaurant</td>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ School</td>
<td></td>
<td>Total</td>
<td>5,166,081 kWh</td>
<td>3,207,956 kWh</td>
<td>kWh</td>
</tr>
<tr>
<td>□ Warehouse</td>
<td></td>
<td>Total Annual Energy Cost</td>
<td>$177,977 > $128,511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Other</td>
<td></td>
<td>Total Annual CO₂e Emissions</td>
<td>138,028 kg</td>
<td>102,434 kg</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peak Electric Demand</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Building components specified in Sentence 1.1.2.3.(2) of Chapter 1 of Division 3 of SB-10 comply with the prescriptive requirements of ASHRAE 90.1-2010</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference Building Energy and Proposed Building Energy Consumptions are calculated by:

Please specify modelling software: __________________________

<table>
<thead>
<tr>
<th>HVAC System Descriptions</th>
<th>Energy Efficiency Features in Proposed Building Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Building Design</td>
<td></td>
</tr>
<tr>
<td>Proposed Building Design</td>
<td></td>
</tr>
</tbody>
</table>

Building is in compliance with mandatory requirements of sections 5.4, 6.4, 7.4, 8.4, 9.4, and 10.4 □ YES

Compliance Result

The design detailed in the above referenced plans complies with the mandatory requirements of the ASHRAE 90.1-2010 Standard and the additional requirements of Supplementary Standard SB-10. The calculated proposed building energy cost (design energy cost), CO₂ emissions and peak electric demand do not exceed the calculated reference building energy cost (energy cost budget) CO₂ emissions and peak electric demand. Therefore, this design **DOES COMPLY** with the ASHRAE 90.1-2010 ECB compliance methodology and the additional requirements of Supplementary Standard SB-10.

The information submitted above is accurate to the best of my knowledge.

Signature:
Name/Title:

Notes:
1. Verify with building official whether full modelling report is required to be submitted.
2. Explain major energy saving features utilized to achieve modelled savings.

Note: Numbering is based on SI edition of ASHRAE 90.1-2010.
November 18, 2016
Appendix-A
Better Buildings Partnership - New Construction
Energy Modeling Report Summary

PROJECT INFORMATION

<table>
<thead>
<tr>
<th>Date (dd/mm/yyyy):</th>
<th>04/07/2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Type:</td>
<td></td>
</tr>
<tr>
<td>Building Area:</td>
<td>2,894 m²</td>
</tr>
<tr>
<td>SPA-Number:</td>
<td></td>
</tr>
<tr>
<td>Project Address:</td>
<td></td>
</tr>
<tr>
<td>Architect Name:</td>
<td></td>
</tr>
<tr>
<td>Architect Telephone:</td>
<td></td>
</tr>
<tr>
<td>Architect E-Mail:</td>
<td></td>
</tr>
<tr>
<td>Architect Name:</td>
<td></td>
</tr>
<tr>
<td>Architect Telephone:</td>
<td></td>
</tr>
<tr>
<td>Architect E-Mail:</td>
<td></td>
</tr>
<tr>
<td>Energy Modeler Name:</td>
<td></td>
</tr>
<tr>
<td>Energy Modeler Telephone:</td>
<td></td>
</tr>
<tr>
<td>Energy Modeler E-Mail:</td>
<td></td>
</tr>
<tr>
<td>Building Type:</td>
<td></td>
</tr>
<tr>
<td>Building Area:</td>
<td>2,894 m²</td>
</tr>
</tbody>
</table>

Modelling Software Used:

<table>
<thead>
<tr>
<th>Modelling Software Used:</th>
<th>eQuest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code Compliance Path:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy End Use</th>
<th>Reference Building</th>
<th>Proposed Building</th>
<th>Energy Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electrical Annual Consumption (kWh)</td>
<td>Natural Gas Annual Consumption (kWh)</td>
<td>Energy Use Intensity (kWh/m²·yr)</td>
</tr>
<tr>
<td>Lights</td>
<td>262,416</td>
<td>0</td>
<td>90.69</td>
</tr>
<tr>
<td>Misc. Equipment</td>
<td>79,217</td>
<td>0</td>
<td>27.38</td>
</tr>
<tr>
<td>Space Heating</td>
<td>0</td>
<td>3,716,727</td>
<td>1,284.48</td>
</tr>
<tr>
<td>Space Cooling</td>
<td>146,448</td>
<td>0</td>
<td>50.61</td>
</tr>
<tr>
<td>Pumps</td>
<td>138,066</td>
<td>0</td>
<td>47.71</td>
</tr>
<tr>
<td>Fans</td>
<td>754,101</td>
<td>0</td>
<td>260.61</td>
</tr>
<tr>
<td>Service Hot Water</td>
<td>0</td>
<td>69,077</td>
<td>23.87</td>
</tr>
<tr>
<td>Totals</td>
<td>1,380,277</td>
<td>3,785,804</td>
<td>1,785.37</td>
</tr>
</tbody>
</table>

I hereby certify that the energy demand and consumption are properly representative of the energy modelling report submitted for the above project.

<table>
<thead>
<tr>
<th>Energy Modeler Name:</th>
<th>Architect Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title:</td>
<td>Title:</td>
</tr>
<tr>
<td>Company:</td>
<td>Company:</td>
</tr>
<tr>
<td>Signature:</td>
<td>Signature:</td>
</tr>
<tr>
<td>Building</td>
<td>Area Lights</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SB-10 Reference Building</td>
<td>262,416</td>
</tr>
<tr>
<td>SBD Building</td>
<td>188,445</td>
</tr>
</tbody>
</table>

Energy (kWh/yr)

<table>
<thead>
<tr>
<th>Building</th>
<th>Cumulative Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB-10 Reference Building</td>
<td>37.9%</td>
</tr>
<tr>
<td>SBD Building</td>
<td>25.8%</td>
</tr>
</tbody>
</table>

Annual Consumption (kWh/yr)

<table>
<thead>
<tr>
<th>Building</th>
<th>Reference Building</th>
<th>Savings By Design Building</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB-10 Reference Building</td>
<td>5,160,081</td>
<td>3,207,956</td>
</tr>
<tr>
<td>SBD Building</td>
<td>138,028</td>
<td>102,434</td>
</tr>
</tbody>
</table>

GHG Emissions (kg CO2eq)